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Abstract

In the paper, the Finslerian-geometry-oriented model of the continuum with microstructure is formulated within the

frame of Newtonian±Eshelbian continuum mechanics, based on the information characterizing a structure-dependent

evolution of state variables. In this approach, position- and direction-dependent deformation and strain measures are

used to describe the motion of the continuum with microstructure at the macro- and microlevel. The variational ar-

guments for a Lagrangian functional de®ned on the Finslerian bundle are used to derive dynamic balance laws,

boundary and transversality conditions for macro- and microstresses of deformational and con®gurational type. The

dissipation inequality for the thermo-inelastic deformation processes is formulated by the su�ciency condition of

Weierstrass type for the action integral. The presented geometric technique is illustrated in the following examples. The

damage tensor, identi®ed with a measure of reduction of load carrying area elements caused by the development of

microcracks or microvoids, is de®ned on the tangent bundle using the lifting technique. The macro±micro constitutive

equations and the associated phenomenological constitutive relations for the thermo-inelastic processes are derived in

terms of the free energy functional and a dissipation potential. A strain-induced crack propagation criterion, de®ned by

the di�erence between the strain energy release rate and the rate of the surface energy of the crack, is formulated for the

kinking of cracks. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

I am very pleased to present a paper for this special issue of the International Journal of Solids and
Structures dedicated to Multi®eld Theories. As my topic, I have chosen to discuss a general geometrical
approach within the frame of Newtonian±Eshelbian continuum mechanics, which leads directly to the
complete set of equations for a dissipative model of continuum with microstructure. One of the reasons for
this choice is the fact that a detailed description of inelastic material behaviour very often demands
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combined theoretical and experimental approaches. At the continuum level, the description of any phe-
nomenon involving inelastic, hysteretic and rate dependent material response combined with nucleation
and evolution of defects requires an extended theoretical methodology rather than a classical mechanical
description. In order to deal with a heterogeneous nature of stressed (distorted) state of the body, where the
motion of material particles (extended objects) is in¯uenced by the presence of dislocations, cracks, voids
and other defects, a multidimensional con®guration space is required for its description. The present study
provides the theoretical, structure-dependent framework for the continuum mechanics methodology in a
form suitable to model deformation processes of continua with microstructure based on a uni®ed Finslerian
geometry conception. Mostly based on recent works in this subject, the contents of this paper show how the
Finslerian geometry (Finsler, 1918; Cartan, 1934), the classical case of the higher-order contact geometry
(Kawaguchi, 1962; Yano and Ishihara, 1973; Miron, 1997), can be used to ®nd a complete set of ®eld
equations for the continuum with microstructure at the macro- and microlevel. This generalized metric
geometry is a natural extension of the Riemannian geometry, where a metric tensor depends both on the
position and the direction (Rund, 1959; Asanov, 1985; Matsumoto, 1986; Abate and Patrizio, 1994; An-
tonelli and Miron, 1996; Bejancu, 1990; Miron, 1997). Certain geometric aspects of the geometry of higher-
order contact can be formulated using the lifting technique (Yano and Ishihara, 1973). Because a link
between the geometry of higher-order contact and the lifting technique manifests itself in di�erent ways, its
essence is only illustrated here (cf. Saczuk, 1992, 1994; Fu et al., 1998). A presentation which follows is
strictly correlated with the role played by defects in the mechanical behaviour of materials since, e.g.,
deformation and fracture are not exceptions in determining whether or not particular processes are likely to
occur.

A fundamental problem in continua with microstructure accounting for defect distributions in the bulk,
originated independently by Kondo (1952, 1955) and Bilby et al. (1955), was developed by Bilby (1960),
Eshelby (1951, 1961), Kr�oner (1955, 1958) and Seeger (1961) in terms of the continuous distribution of
dislocations. Much e�orts has been expended on the development of concepts of continua with micro-
structure based on notions of continuum mechanics (Truesdell and Toupin, 1960; Truesdell and Noll, 1965;
Noll, 1967; Wang, 1967; Eringen and Kadafar, 1976; Green and Rivlin, 1964; Mandel, 1974; Mindlin, 1964;
Capriz, 1989; Capriz and Podio-Guidugli, 1976; Green and Naghdi, 1995; Le and Stumpf, 1996a,b; Naghdi
and Srinivasa, 1993a,b). The origin of such theories is usually traced back to Cosserat and Cosserat (1909),
who introduced a rotation tensor at each material point as an additional ®eld variable. The direction
adopted by Naghdi and Srinivasa (1993a,b) and Le and Stumpf (1996a,b) and based on a director concept,
was generalized by Stumpf and Saczuk (2000). Recently, the Finslerian geometry has been applied by
Saczuk (1996, 1997a,b) to propose a continual description of inelastic deformations of solids with micro-
structure.

A degradation process of the mechanical properties of solids, documented by experimental results, is
generally connected with nucleation and evolution, growth and coalescence of micro- and macrodefects as
voids and cracks. Such defects evolve, to some degree, independently to the motion of the body due to the
con®gurational forces (®rst derived and discussed by Eshelby, 1951), whose divergence embody the in-
homegeneity of the body. The role played by con®gurational forces on (macro)defects has attracted in-
creased interest in the recent years (Stumpf and Le, 1990, 1992; Maugin and Trimarco, 1992; Maugin, 1993;
Gurtin, 1995; Gurtin and Podio-Guidugli, 1996). A physically justi®ed description of a progressive de-
gradation of the bulk properties of solids with defects was ®rst proposed by Kachanov (1958) within a
scalar model of isotropic damage. Several investigations, following Kachanov (1958), have proposed
modi®cations of the scalar model (Kachanov, 1986; Chaboche, 1988a; Krajcinovic, 1989; Lemaitre, 1992).
Damage accounting for ®nite elasto-plastic deformations is further investigated among others by Simo and
Ju (1987) and Lubarda and Krajcinovic (1995). A ®bre bundle approach to an anisotropic damage analysis
is presented by Fu et al. (1998), where the damage state is identi®ed with a breakdown of the holonomicity
in the continuum.
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The evolution of cracks in solids, crucial to the fracture behaviour, is generally connected with the non-
stable process of the propagation of displacement discontinuities and with the formation of new boundaries
that develop in the medium. Cracks dissipate energy by creating new surfaces, and the fracture toughness of
the material is related to the energy release rate at the tip of cracks. Numerous investigations (e.g., Gilman,
1960; Averbach, 1965; Kitagawa et al., 1975; Gurson, 1977) have shown the role of microstructure, en-
vironment and crack size in¯uencing the fracture response of materials. The response of the crack on loads
is realized by structural changes in its orientation and topography in order to attain the in®mum of the free
energy state (Francfort and Marigo, 1998). Most of the analysis of fracture mechanics is devoted to the
determination of the energy release rate, initiated by Gri�th (1920), for various special conditions (cf.
Hertzberg, 1983; Freund, 1990). Standard models in fracture mechanics are based on the assumption that
the total energy of the body is the sum of a bulk term, representing the strain energy, and of a surface term,
representing the energy associated with the displacement discontinuity. Using the energy balance and the
singularity of the stress ®eld in the vicinity of the crack tip, they lead to the ®nite energy release rate as the
crack expands. Of particular signi®cance is the mathematical concept for a J-integral fracture analysis
established by Rice (1968).

The present paper is concerned with the development of the Finslerian-geometry-oriented model of the
continuum with microstructure. A kinematical concept used in this paper is largely motivated by features of
orientation-dependent phenomena like shear bands and cracks. The assumption relating the position of
material points in the actual con®guration in terms of a position-direction dependent function leads to
deformation and strain measures for macro- and micromotion all depending on the position and direction
(Section 2). The variational arguments for a Lagrangian functional de®ned on the Finslerian bundle and an
assumed one-parameter family of transformations of the independent and dependent variables are used to
derive dynamic balance laws, boundary and transversality conditions for macro- and microstresses of
deformational as well as con®gurational type, where the latter have to be satis®ed by the driving forces on
macro- and microdefects (Sections 3.1 and 3.2). The dissipation inequality for the thermo-inelastic de-
formation processes is formulated by the su�ciency condition of Weierstrass type for the action integral
(Section 3.3). The presented geometric approach is illustrated in the following examples. The damage
tensor, identi®ed with a measure of reduction of load carrying area elements caused by the development of
microcracks or microvoids, is de®ned on the tangent bundle using the so-called lifting technique. The re-
sulting damage tensor is composed either from initial, additional and direct (deformation-induced) dam-
ages or from direct and transferred ones (Section 4.1). The macro±micro constitutive equations and the
associated phenomenological constitutive relations for the thermal-inelastic processes and a constitutive
damage model of Kachanov's type accounting for the crack density are derived in terms of the free energy
functional and a dissipation potential (Section 4.2). A strain-induced crack propagation criterion, de®ned
by the di�erence between the strain energy release rate and the rate of the surface energy of the crack, is
formulated for the kinking of cracks (Section 4.3).

2. Basic kinematic equations

We consider a material body (continuum) B with microstructure at the equilibrium con®guration C0 in
which the density q0 and the temperature h0 have the uniform values, the stress state is not uniform and the
heat ¯ux is everywhere zero. We will refer to C0 as the global reference con®guration and denote by Ct the
con®guration attained by B at the current time t. The body B is considered to be modelled by a generalized
oriented continuum endowed at each point with a deformable vector. Such a choice stems form the fact that
the motion of a material particle (an extended geometric object) in B from one equilibrium con®guration to
another one involves the cooperative motion of many microingredients (dislocations, microcracks) and
requires for its detailed description a multidimensional con®guration space (cf. Kunin, 1990). The oriented

J. Saczuk / International Journal of Solids and Structures 38 (2001) 1019±1044 1021



particles of B are identi®ed by their position x and direction y, brie¯y denoted by the pair (position, di-
rection) � �x; y� in the reference con®guration C0.

Within the adopted methodology, each material point of B located at a position x is endowed with an
internal structure described by an additional independent microvector (director) ®eld y. All such points are
embedded in the continuum which contains heterogeneously distributed dislocations and voids (crack
dislocation arrays). 2 The state space B for the body without microstructure is the three-dimensional
physical Euclidean space. The state space B for the body with microstructure is the ®bre space

B��M � E3 � E3;

where B is the body and M, the microstructure in the reference con®guration C0, E, the Euclidean space and
�� denotes the local Cartesian product (a local trivialization).

We assume that a deformation of the body B can be expressed in terms of the position-director-
dependent deformation vector v relating particles in the actual con®guration Ct by means of a smooth in-
vertible map

X � v�x; y�; v : B! E3 � E3 �2:1a; b�
in terms of oriented particles in the reference con®guration C0. In the manifold-theoretic setting, we shall
therefore consider a vector ®eld v on B, which can give rise to a vector ®eld �v on the base space B. The
notion of deformation is here identi®ed with an injection v of B into E3 � E3.

As a special case of Eq. (2.1), the kinematics of a generalized Cosserat continuum can be described by
two smooth functions

X � /�x�; �2:2�

Y � D�x�y; �2:3�
where y � �y1; y2; y3� is the director in the initial con®guration and Y � �Y 1; Y 2; Y 3� the director in the
actual con®guration, and D denotes a linear map. From the geometric point of view, the two functions (2.2)
and (2.3) represent, in reality, coordinate transformations (extended point transformations) in E3 � E3.

Formally, the motion of the body B is a family of time-dependent di�eomorphisms vt, i.e. the time-
dependent relation of Eq. (2.1a),

X�t� � vt�x; y� � v�x; y; t�; �2:4�
where

v : B� R! E3 � E3 � R �2:5�
is the time-dependent analogue of Eq. (2.1a).

2.1. Internal state speci®cation

In this section, we discuss basic concepts suitable for de®ning the internal state of the body B. This step,
which has no close correlation with the continuum mechanics methodology, is adapted from the theory of
non-holonomic subspaces (Yano and Davies, 1955; Deicke, 1955; Schouten, 1954) to introduce the mi-
crostructure-dependent covariant operators on B. We assume that the internal state of the body can be
de®ned by specifying, for instance, the dislocation functional W �x; y� � L2�x; y�, where L � L�x; y� is the
fundamental function describing the generation and evolution of dislocations. Accordingly, since cracks are

2 In this heterogeneous medium, classical particles can be viewed as individual continua.
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clearly responsible for the fracture of materials in a wide range of situations, the restriction of W to the
dislocation functional is not a severe limitation. This functional represents, very often, an anharmonic
approximation of interactions between dislocations and their self-energy. The mentioned identi®cation is
motivated by the assumption in materials science saying that the energy density of dislocations is pro-
portional to the square of their Burgers vector (cf. Nabarro, 1967; Hirth and Lothe, 1968). The internal
vector ®eld y can be identi®ed here with the Burgers vector b multiplied by a number of mobile dislocations
(Eshelby et al., 1951).

For this purpose, we need to consider an arbitrary six-dimensional Riemannian space V with the ®eld of
frames �gk; zk�. The natural frame �gk; zk� of V is not transformed as basis, if the coordinate transformation
(2.2) and (2.3) are adopted to this space. This fact suggests to regard the space under consideration as a
non-holonomic subspace (here B) of the space V. This non-holonomic subspace has the frame of reference
�hgk; zk�, de®ned below, which is not associated with the coordinate system on B. The solution of this
problem will be based on the introduction of non-holonomic frames in V, instead of gk and zk, which leads
in a natural manner to connection coe�cients in the space V (cf. Yano and Davies, 1955).

According to Eqs. (2.2) and (2.3), the local bases �gk; zk� at a point �x; y� and �gk0 ; zk0 � at a point �x0; y0�
are related by

gk

zk

� �
� o/k0=oxk �oDk0

l =oxk�yl

0 Dk0
k

" #
gk0

zk0

� �
; �2:6�

where yk0 � Dk0
k �x�yk; /k0 � /k � vÿ1; xk0 � xk � vÿ1; etc. As follows from Eq. (2.6), the vectors gk are not

transformed as vectors. Suppose now that there exists on B a family of functions N k
j �x; y�, called coe�-

cients of a non-linear connection, with the following law of transformation (cf. �Comi�c, 1989):

N k
j �x; y� � N k0

l0 �x0; y0�
o/l0

oxj
Dk

k0 �x� ÿ
oD�x0�kk0

oxl0
o/l0

oxj
yk0 : �2:7�

The existence of the non-linear connection NC�Nk
l � allows one to introduce an adapted basis �hgk; zk� in V,

where the vectors hgk de®ned by

hgk � gk ÿ N l
kzl �2:8�

are transformed under Eqs. (2.2) and (2.3) as vectors. The ®eld of bases �hgk; zk�, in turn, is adapted to the
decomposition of the tangent space TB into the subbundle �TB�h spanned by hgk and the subbundle �TB�v
spanned by zk to model the macrobehaviour and the microbehaviour of the oriented material particles,
respectively.

The frame �gk; vzk� dual to �hgk; zk� is then de®ned by

gk � dxk; �2:9a�
vzk � zk � N k

j gj; �2:9b�
where zk � dyk. In dual terms, the cotangent space T HB is decomposed into the subbundle �T HB�h spanned
by gk and the subbundle �T HB�v spanned by vzk.

The speci®ed quantities N k
l are de®ned by the fundamental function, 3 L, which from a physical point of

view can be identi®ed with the free energy of dislocations and substructures induced by the deformation

3 Note that the non-linear connection coe�cients can be determined by coe�cients of a spray on manifold (cf. Sternberg, 1964;

Miron, 1997).
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process. In this way, one can de®ne in an invariant manner a local topology (a topography of element glide
resistance, Kocks et al., 1975) of the dislocated body within the frame of macro- and microspace. To de®ne
macro- and microconnections in the body B, which are intended to describe the internal state of it, we
proceed as follows.

We introduce covariant operators rh and rv for the macro- and microparts of the tangent space TB
using Christo�el symbol concepts as follows:

rh
hgi

hgj � hCk
ij

hgk; �2:10�

rv
zi

zj � vCk
ijzk: �2:11�

Connection coe�cients of Ch �hCk
ij� and Cv �vCk

ij�, compatible with the metric tensor gij, (2.16a), speci®ed by
the conditions

rh
hgk

gij � dkgij ÿ glj
hCl

ik ÿ gil
hCj

jk � 0; �2:12�

rv
zk

gij � �@kgij ÿ glj
vCl

ik ÿ gil
vCl

jk � 0 �2:13�
are represented by the generalized Christo�el symbols 4

hCi
jk � 1

2
gil djglk

ÿ � dkgjl ÿ dlgjk

�
; �2:14�

vCi
jk � 1

2
gil� �@jglk � �@kgjl ÿ �@lgjk�: �2:15�

The di�erentiation operator dk used in Eq. (2.14) stands for dk � @k ÿ N l
k

�@l; where @k � o=oxk and �@k �
o=oyk.

The introduced connection coe�cients hCi
jk;

vCi
jk and Nl

k are calculated from the assumed dislocation
(microstructure-dependent) functional L2 � W �x; y� in terms of the metric tensor

gij�x; y� � 1
2
�@i

�@jL2�x; y�; �2:16a�

L2�x; y� � gij�x; y�yiyj �2:16b�
and using the geodesic equations (the ®rst-order evolution equations for the internal state vector y) (cf.
Miron, 1997)

dyi

dt
� 2Gi�x; y� � 0; �2:17�

where the components of the contravariant vector Gi are de®ned by

2Gi�x; y� � 1

2
gij o2L2

oyjoxk
yk

�
ÿ oL2

oxj

�
: �2:18�

The restrictions on the fundamental function L (positively homogeneous of degree one with respect to y)
are essentially those needed to ensure the regularity of the minimization problem of the integral

R
L�x; dx�.

An example of a position±direction-dependent functional L2 � W �x; y� describing the energy of disloca-
tions can be found in Stumpf and Saczuk (2000).

According to conditions (2.12) and (2.13), and using the methodology of the Finslerian geometry (Rund,
1959; Matsumoto, 1986), connection coe�cients (2.14) and (2.15) are ®nally reduced to

4 Originally denoted by CHi
jk and Ci

jk , respectively; cf. Cartan (1934) and Rund (1959).
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hCijk � gjl
hCl

ik;
hCijk�x; y� � cijk ÿ vCkjlNl

i ÿ vCijlNl
k � vCiklN l

j ; �2:19�
where

cijk�x; y� � 1
2
�@kgij � @igjk ÿ @jgki�; cijk � gjlc

l
ik; �2:20�

vCijk � gjl
vCl

ik;
vCijk�x; y� � 1

2
_@kgij�x; y�: �2:21�

The tensor vCijk, called the Cartan tensor ®eld, is positively homogeneous of degree ÿ1 with respect to y,
totally symmetric and satis®es the following property:

vCijkyi � vCijkyj � vCijkyk � 0 �2:22�
together with

@l
vCijkyi � @l

vCijkyj � @l
vCijkyk � 0:

The spray of the non-linear connection (2.18) written in terms of the connections ci
jk and hCi

jk has the form

Gl�x; y� � 1
2
cl

jkyjyk; Nl
k�x; y� � �@kGl � hCl

jkyj: �2:23�
One should stress here the evolution character of the internal vector ®eld y which results from the fact

that the vector ®eld y being the in®nitesimal generator induces the ¯ow /��; x� (cf. Olver, 1993) in the
internal state space. The ¯ow is, by de®nition, the parameterized (here by �) integral curve passing through
x in B de®ned by the following di�erential problem:

y � d

d�
/��; x�; /��0; x� � x

for all � (for further details see Olver, 1993). This di�erential problem states that y is tangent to the curve
/��; x� for ®xed x, i.e., for the speci®ed initial conditions for this curve.

2.2. Deformation gradients

A deformation gradient in the generalized oriented continuum B is de®ned in terms of covariant de-
rivatives (2.10) and (2.11) as follows. First, we introduce the direct sum of the covariant derivatives

rh �rv � 5�rh �rv�D;
where5 is the codiagonal operator (cf. Pareigis, 1970) and � the direct sum. Using the matrix notation for
the diagonal operator D, the codiagonal operator 5 and the direct sum of covariant derivatives rh �rv,
we get

D � 1

1

� �
; 5 � �11�; rh �rv � rh 0

0 rv

� �
;

where 1 is the identity tensor on B. Thus, the addition rh �rv is identi®ed here with the following
composition:

rh �rv � �11� r
h 0

0 rv

� �
1

1

� �
: �2:24�

According to Eq. (2.24), the deformation gradient F in the generalized oriented continuum B is expressed
by

F � rh
ÿ �rv

�
X � Fh � Fv; �2:25�
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where 5

Fh � rhX � �Fh�ak h�ga 
 gk; Fv � rvX � �Fv�ak�za 
 vzk; �2:26�
are macro- and micropart of F, �h�ga;�za� is the basis in the actual con®guration Ct and 
 denotes the tensor
product. The additive decomposition (2.25), opposite to the multiplicative one assumed in the classical
plasticity (Eckart, 1948; Lee, 1969), does not demand here any additional assumptions. The components Fh

and Fv do not describe strictly regular (say, elastic) and irregular (say, plastic) phenomena. It is apparent,
therefore, that the inelastic behaviour of a solid (a simple case of the dissipation phenomenon) cannot be
treated as a simple superposition of regular and irregular constituents.

Components of the deformation gradients Fh and Fv in Eq. (2.26) are given by

�Fh�ak � @kX a ÿ �@lX a �@kGl � hCa
bkX b; �2:27�

�Fv�ak � �@kX a � vCa
bkX b �2:28�

with

hCa
bk � da

i d
j
b�hCi

jk � vÿ1�; vCa
bk � da

i d
j
b�vCi

jk � vÿ1�:
The connection coe�cients appearing in Eqs. (2.27) and (2.28) are de®ned in terms of components of the
metric tensor g � g�x; y� according to Eqs. (2.14), (2.15) and (2.23).

We understand that the elimination of the internal vector ®eld y from Eqs. (2.17) and (2.26)±(2.28) leads
to a time-dependent relation for the deformation gradient F.

There are a number of special cases allowing to simplify the representation of F depending on whether (i)
the internal state variables are neglected and/or (ii) X is a function of x or y or both x and y. For instance, if
X � X�x�, then

�Fh�ak � @kX a � hCa
bkX b and �Fv�ak � vCa

bkX b:

One should note that whenever a given state of B has associated with it a non-vanishing torsion tensor,
then this state contains dislocations, as cogently argued by Kondo (1955). This fact implies that in the case
of B, the objects vCa

bk and N i
k � �@kGi are non-singular. If the condition vCa

bk � 0 is satis®ed, then the vertical
part of deformation is Euclidean and the dissipative character of this measure is lost.

It is natural to assume that the deformation v is an orientation-preserving di�eomorphism demanding

J � det F � J hJ v > 0 �2:29�
with J h � det Fh and J v � det Fv. For mappings which have continuous derivatives, this is the necessary
and su�cient condition for invertibility. Since F is invertible, one can use the polar decomposition from
linear algebra (Chevalley, 1946), and uniquely decompose F as follows:

F � RU � Fh � Fv; �2:30�
where

Fh � RhUh; Fv � RvUv: �2:31�
Introduced above macro- and microstretch tensors, Uh and Uv, are the positive de®nite tensors and macro-
and microrotation tensors, Rh and Rv, the proper orthogonal tensors. By virtue of condition (2.29), relation

5 Objects connected with the reference state of B are denoted by lowercase Latin letters that occupy the centre of the alphabet, that

is i; j; k; . . ., while those connected with the actual state are designated by lowercase Latin letters at the front of the alphabet, that is

a; b; c; . . .
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(2.4) is invertible for any ®xed value of t. This fact enables us to express various ®elds (such as the dis-
placement and the temperature) as the functions of �x; y; t�.

Similarly, the velocity and acceleration of the material point at time t are de®ned in the standard manner,

vt � v�x; y; t� � _X�x; y; t� � o
ot

v�x; y; t�; �2:32�

at � a�x; y; t� � �X�x; y; t� � o2

ot2
v�x; y; t�: �2:33�

Here, the dot is used to denote the partial time derivative under �x; y� ®xed.

2.3. Material strain measures

Before formulating any de®nition of strain, it is necessary to de®ne a distance in the space modelling the
behaviour of the body B. An element of length of B can be de®ned in the reference con®guration C0 as

�ds�2 � gkl�x; y�dxkdxl � gkl�x; y�DykDyl

and, in an analogical manner, in the actual con®guration Ct,

�d�s�2 � �gab�x; y�d�xad�xb � �gab�x; y�D�yaD�yb;

where gkl and �gab are components of the metrics, while dxk;Dyk and d�xa;D�ya are the components of length
measured in the reference and the actual con®guration of B. To formulate an exact de®nition of inelastic
strain in B we use de®nition (2.25) and write

�d�s�2 ÿ �ds�2 � FT�gFÿ g � Cÿ g � 2E: �2:34�
The measure of deformation C : T HB! T HB introduced here is a structure-dependent Cauchy±Green type
strain measure de®ned by

C � FT�gF � Ch � Cv;

where Ch � �Fh�T�gFh and Cv � �Fv�T�gFv. The Cauchy±Green strain tensor, E, given by

E � 1
2

C� ÿ g�;
where

g � gh � gv; �gh�ij � �gv�ij � gij

has the property of vanishing in the reference con®guration.
Using de®nitions (2.27) and (2.28), we obtain the following representation for strain measures Ch and Cv,

Ch � @iX a@lX b
�

� �@mX b �@lGm �@kX a �@iGk � hCb
cl

hCa
diX

cX d

ÿ @�lX �b �@jkjX a� �@i�Gk ÿ �@mX �b �@�lGjmjhC
a�
jcji�X

c � @�lX �bhCa�
jcji�X

c
�

�gabgl 
 gi;

Cv � �@iX a �@lX b
�

� �@�lX �bvCa�
jcji�X

c � vCa
di

vCb
elX

dX e
�

�gab
vzl 
 vzi;

�2:35�

where � � means the symmetric part with respect to the enclosed indices, and the sign j j around the index is
used to exclude it from the symmetrization operation. The interrelated pair of measures, Eq. (2.35), de®ned
in the invariant manner, is strictly connected with the analytical form of the functional L characterizing the
local topography of deformation process (cf. Kocks et al., 1975). Using the introduced strain measures one
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can, in principle, completely describe any state or distortion of the three-dimensional body in terms of some
suitable distribution and interaction energies of dislocations and/or other material defects.

Before concluding this section, one special case may be noted. In the case of the classical continuum
mechanics, when the internal vector ®eld y is neglected, then Ch has the classical sense, while Cv is singular
if X and g are functions of x alone. In the other limiting case, when a residual state inside the body is non-
singular both Ch and Cv have to be considered. To specify the connection coe�cients vCa

bk;
�@jGi and hCa

bk, we
have to estimate the local dislocated (distorted) state of B by considering its fundamental functional L. In
general, X � X�x; y� and we are free to choose either C � Ch � Cv de®ned on the Finslerian bundle, or Cv

de®ned on the ®bre space, or Ch de®ned on the base space of the Finslerian bundle.

3. Variational formulation

In this section, our purpose is to provide a complete set of balance laws and boundary conditions for
macro- and microstresses of Newtonian and Eshelbian type for a dissipative model of oriented continuum
with microstructure, say, with inhomogeneities and evolving defects. We extend and generalize the varia-
tional formulation technique developed and applied by Rund (1966), Lovelock and Rund (1975), Naghdi
and Srinivasa (1993a), Saczuk (1993, 1996), Stumpf and Le (1990, 1992), Maugin and Trimarco (1992),
Maugin (1993) and Stumpf and Saczuk (2000). Concerning the transversality conditions, we will take the
line adopted by Edelen (1981) and Saczuk (1993).

The direct problem of the calculus of variation is concerned with ®nding local sections (®elds) of Lt

which give critical (equilibrium) points of the integral
R
Lt dV dt. This problem is related to the problem of

®nding solutions of the Euler±Lagrange equations.

3.1. The ®rst-order action integral

According to the de®ned macro- and microdeformation gradients (2.26), the ®rst-order functional is
de®ned as

It �
Z

G

Z
T
Lt�x; y; t;X;Fh;Fv; _Xh; _Xv�dV dt; �3:1�

where _Xh and _Xv are the time of derivative of Eq. (2.1) reduced to the macro- and microspace, respectively
(cf. Eq. (3.14)). We therefore assume that the Lagrangian density functional Lt, described by the ®rst-order
derivatives of state variables, is a smooth map

Lt : E6 � R� J 1�E7� ! R;

where J 1��� is the ®rst jet bundle (cf. Libermann and Marle, 1986). We also assume that the Lagrangian is
invariant under arbitrary transformations of coordinates xi and yi with the non-singular Jacobian. A
common assumption splitting the functional Lt into potential and kinetic parts is not introduced here.
Moreover, G denotes a ®xed, closed and simply-connected region (a compact six-dimensional manifold) in
the six-dimensional space of �x; y�, bounded by the surface oG and T a time interval. The region G is here
identi®ed with a part of the body B. The volume element associated with any of the inelastically distorted
states considered in Eq. (3.1) is de®ned by

dV � ���
g
p

dxdy � ���
g
p

dx1dx2dx3dy1dy2dy3; �3:2�
where g is the determinant of the metric tensor g � gh � gv with gh and gv de®ned as

gh � gijg
i 
 gj; gv � gij

vgi 
 vgj:
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The variational derivative of functional (3.1) yields

dIt �
Z

G

Z
T
�dLt�dV dt �

Z
G

Z
T
Lt d�dV dt�; �3:3�

where

dLt � rhLt � dx�rvLt � dy� oLt

oXh
� dXh � oLt

oXv � dXv � oLt

oFh
� dFh � oLt

oFv � dFv � oLt

o _Xh
� d _Xh

� oLtv

o _X
� d _Xv �3:4�

and, using Eq. (3.2) and the assumption dt � dt,

d�dV dt� � d� ���gp dxdydt� � �Dh�dx� � Dv�dy��dV dt; �3:5�
with

Dh�dx� � rh�dx� � o�dx�
oX

rhX; Dv�dy� � rv�dy� � o�dy�
oX

rvX:

All variational derivatives are obtained 6 under the assumption that the system (the body with loads)
admits a one-parameter transformation group acting on the independent and dependent variables in the
form

�xi � xi � vi
x�xm; ym; t;X b��� o���;

�yi � yi � vi
y�xm; ym; t;X b��� o���;

�X a � X a � va
X �xm; ym; t;X b��� o���;

�3:6�

where � denotes a scalar parameter, while vi
x���; vi

y��� and va
X ��� are class C1 functions of their variables such

that

�xi�0� � xi; �yi�0� � yi; �X a�0� � X a �3:7�
for �! 0.

To obtain the mechanical version of the balance laws for B we de®ne macro- and micromomentum
vectors

ph � oLt

o _Xh
; pv � oLt

o _Xv
; �3:8a; b�

con®gurational macro- and micromomentum vectors

ph � oLt

o _x
; pv � oLt

o _y
; �3:9�

macro- and microstress tensors

Th � ÿ oLt

oFh
; Tv � ÿ oLt

oFv ; �3:10�

con®gurational macro- and microstress tensors

Th � ÿLt1
h ÿ �Fh�TTh; Tv � ÿLt1

v ÿ �Fv�TTv; �3:11�

6 Existence and continuity of derivatives will be assumed without explicit mention.
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external and internal body forces

fh � oLt

oXh
; fv � oLt

oXv ; �3:12a; b�

and macro- and microinhomogeneity forces

fh � rhLt; fv � rvLt: �3:13�
At a corner point X � �Xh;Xv� the above derivatives are to be interpreted as left- or right-hand derivatives.
Moreover, in Eqs. (3.8a,b) and (3.9), we have adapted the following de®nitions of time-dependent objects:

_Xh � vh � �@tv�h; _Xv � vv � �@tv�v;
_xh � vh � �@tv

ÿ1�h; _yv � vv � �@tv
ÿ1�v

�3:14�

calculated for a ®xed particle of B, with @t denoting the partial derivative with respect to time t. One should
stress here that the decomposition of the cited objects into � �h and � �v parts is unique. Such a notation is
used extensively throughout the remaining sections together with the convention

dXh � �dX�h; dXv � �dX�v:
Introducing Eqs. (3.4), (3.5) and (3.8a,b)±(3.13) into Eq. (3.3) and using the divergence theorem, we

obtain

dIt �
Z

G

Z
T
��ÿ _ph � fh �DivTh� � dXh � �ÿ _pv � fv �DivTv� � dXv

� �ÿ _ph � fh �DivTh� � dx� �ÿ _pv � fv �DivTv� � dy�dV dt

ÿ
Z

oG

Z
T
�Thnh � dx� Thnh � dXh � Tvnv � dy� Tvnv � dXv�dS dt; �3:15�

where dS denotes the element of area of the hypersurface oG bounding G, nh and nv are the suitable ori-
entated unit normal vectors to oG at the macro- and microlevel and

Div Th � DhTh ÿ �oGDvTh ÿ ThCh; Div Tv � DvTv ÿ TvCv;

DivTh � ÿrhLt ÿ �Fh�T�fh �Div Th�; DivTv � ÿrvLt ÿ �Fv�T�fv �Div Tv�
the generalized divergence operator Div of Th;Tv;Th and Tv.

The variation (3.15) was obtained under the following initial conditions:

ph
��
0
� ph

��
t
� 0; pvj0 � pvjt � 0;

ph
��
0
� ph

��
t
� 0; pvj0 � pvjt � 0

�3:16�

at the initial and ®nal times. The stationary conditions for an arbitrary time variation dt,

vh � _ph � vh � _ph � 0; vv � _pv� vv � _pv � 0

represent kinematical compatibility conditions between physical vh�vv� and material vh�vv� velocities and
physical _ph� _pv� and material _ph� _pv� momentum rates at both levels.

The constitutive relations (3.8a,b)±(3.13) describing the conservative part of the model may be deduced
from the Clausius±Duhem inequality.

The starting point for the investigation of the dissipative model of oriented continuum with micro-
structure is the action integral (3.15) modi®ed by including into its integrand prescribed tractions th; tv,
whose components are taken in the actual con®guration and con®gurational boundary stresses th; tv, whose
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components are taken in the reference con®guration on each part of oG. We assume that the action It

associated with the motion of B satis®es the relation

dIt � ÿ
Z

G

Z
T
�th � dXh � tv � dXv � th � dx� tv � dy�dV dt: �3:17�

It is also assumed that body forces fh and fv acting on each volume element dV of B are de®ned by
Eq. (3.12a,b), and, analogously, con®gurational body forces fh and fv acting on each volume dV of B are
de®ned by Eq. (3.13).

3.2. Balance laws, boundary and transversality conditions

The dynamical laws and boundary conditions for deformational and con®gurational forces resulting
from the stationarity condition (3.15) together with Eq. (3.17) are following:

(a) The balance of deformational and con®gurational macromomentum

_ph � fh �Div Th; _ph � fh �DivTh; �3:18�
where ph is the momentum vector, ph the Eshelbian momentum vector, Th the ®rst Piola±Kirchho�
macrostress tensor, Th the Eshelbian macrostress tensor, fh the external macrobody force and fh the mate-
rial macroinhomogenity force.

(b) The balance of moment of deformational and con®gurational macromomentum

Fh�Th�T � Th�Fh�T; Ch�Th�T � ThCh: �3:19�
(c) The balance of deformational and con®gurational micromomentum

_pv � fv �Div Tv; _pv � fv �DivTv; �3:20�
where pv is the micromomentum vector, pv the Eshelbian micromomentum vector, Tv the ®rst Piola±
Kirchho� microstress tensor, Tv the Eshelbian microstress tensor, fv the internal microbody force and fv the
material microinhomogeneity force.

(d) The balance of moment of deformational and con®gurational macromomentum

Fv�Tv�T � Tv�Fv�T; Cv�Tv�T � TvCv: �3:21�
(e) The traction boundary conditions and the con®gurational traction boundary conditions

Thnh � th; Tvnv � tv; Thnh � th; Tvnv � tv �3:22�
where nh and nv are the outer normal vectors to the boundary oB at macro- and microlevel, respectively.

(f) The transversality conditions

ÿThnh � dx � Thnh � dXh; ÿTvnv � dy � Tvnv � dXv �3:23�
are the result of demanding that the variational identity (3.15) is equal to zero, dIt � 0, for all variations
�dx; dy; dXh; dXv�. A set of variations �dx; dy; dXh; dXv� satis®es the transversality conditions on oG if and
only if the conditions (3.23) are satis®ed at all points of oG (Edelen, 1981; Saczuk, 1993).

One has to note that the transversality conditions must be satis®ed, if the action of the functional It has
to be stationary. An integration of both sides of Eq. (3.23) over an arbitrary boundary R of G, say a new
fracture surface, leads to the virtual surface principles:

ÿ
Z

R
Thnh � dxdR �

Z
R

Thnh � dXhdR; �3:24�
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ÿ
Z

R
Tvnv � dydR �

Z
R

Tvnv � dXvdR: �3:25�

Here, R may denote either an arbitrary part oG of the body B or a certain internal boundary within the
body like that connected with the evolution of new crack surfaces in the fracture process. The principles
(3.24) and (3.25) de®ne an equality between generalized ®eld forces on variable boundaries and the actual
forces that act directly on the boundaries in their motion.

3.3. The dissipation inequality

The second law of thermodynamics is the assertion that, when thermal e�ects are neglected, the rate of
energy increase cannot exceed the total expended power. Written in the form of the Clausius±Duhem in-
equality (or the entropy production inequality) it is identi®ed here with the su�ciency condition for the
functional (3.1) (cf. Saczuk, 1997b; Stumpf and Saczuk, 2000).

The Euler±Lagrange equations (3.18)±(3.21) of Eq. (3.1) are not, in general, su�cient for the functional
It to assume the extreme value. The su�ciency conditions for It, strictly connected with the convexity
conditions demanded by the dissipation inequality, can be easily obtained within the so-called method of
equivalent integrals (Rund, 1966; Lovelock and Rund, 1975). This method, in principle, requires the
construction of a function Kt (a counterpart of the total derivative) de®ned on Eq. (2.1). This function being
independent of the choice of the subspace (2.1) is the integrand ~Lt�x; y� �Lt�x; y� ÿ Kt�x; y� of a new
action integral

~It�x; y� �
Z

G

~Lt�x; y�dV

which, by de®nition, provides an extreme value to the same solutions as the solutions of the original
problem de®ned by It �

R
G LtdV .

Within the cited method, we have to construct a function Kt de®ned on

X i � X i�x; y; t�; h � h�x; y; t�: �3:26�
(Here we assume that Lt is dependent also on temperature h and its gradients rhh and rvh.) The function
Kt, which gives rise to the equivalent variational problem, can be given as follows (cf. Rund, 1966; Stumpf
and Saczuk, 2000):

Kt�~Fh; ~Fv;rh ~h;rv ~h� �Lÿ5
t det Ltg� g

�
� oLt

oFh

�
� oLt

oFv

�
�~Fh ÿ Fh � ~Fv ÿ Fv�

� oLt

orhh

�
� oLt

orvh

�

 �rh ~hÿrhh�rv ~hÿrvh�

�
; �3:27�

where quantities rhh and rvh represent two temperature gradients, ®rst, the temperature gradient of
material points, second, the internal temperature gradient of the internal structure of the point. 7 Moreover,
the arguments Fh;Fv and rhh;rvh refer here to the geodesic ®eld in the analysed subspace, while ~Fh; ~Fv and
rh ~h;rv ~h are arbitrary.

Under this preparation, the su�ciency condition of Weierstrass for thermo-inelastic process of B has the
form

E � E�Fh;Fv;rhh;rvh; ~Fh; ~Fv;rh ~h;rv ~h�P 0; �3:28�

7 The multiplier Lÿ5
t in Eq. (3.27) is a consequence of the dimension of B and de®nition of the determinant.
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valid for all ~Fh � QhFh and ~Fv � QvFv with arbitrary positive-de®nite tensors Qh and Qv and for all con-
stants # such that ~h � h� # > 0. The Weierstrass excess function E is then de®ned by

E �Lt�~Fh; ~Fv;rh ~h;rv ~h� ÿ Kt�~Fh; ~Fv;rh ~h;rv ~h�: �3:29�
Identi®cation of the corresponding di�erences in Eq. (3.27) with their increments (thermodynamic forces)
leads to a local Clausius±Duhem type inequality accounting for thermal e�ects in the form

q0
_Lr ÿ �Th � Tv� � � _Fh � _Fv� � hÿ1�rhh�rvh� � �Hh �Hv�6 0; �3:30�

where _Lr�Lt � q0Lr� is the rate of energy functional per unit mass, q0 the mass density in the reference
con®guration, g the entropy, h the absolute temperature, Hh and Hv macro- and microheat ¯ux vectors.
Here, the thermal terms were obtained within the theory of hyperbolic heat transfer (Gurtin and Pipkin,
1968), where a thermal path �h�t�;rhh�t�;rvh�t�� is identi®ed with its summed history ��ht�s�;rh �ht�s�;
rv �ht�s��, whose rates are given by

d

dt
�ht�s� � h�t� ÿ ht�s�; d

dt
rh �ht�s� � rhh�t� ÿ rhht�s�;

d

dt
rv �ht�s� � rvh�t� ÿ rvht�s�:

In the case of a pure mechanical model, this inequality reduces to (cf. Hanyga, 1990)

q0
_Lr ÿ �Th � Tv� � � _Fh � _Fv�6 0:

From the fact that the right-hand side of Eq. (3.30) never exceeds some ®nite upper bound, equal q0h _g
(Day, 1972), the inequality (3.30) leads to the ®nal form

q0�g _h� _W� ÿ �Th � Tv� � � _Fh � _Fv� � hÿ1�rhh�rvh� � �Hh �Hv�6 0 �3:31�
expressed in terms of the Helmholtz free energy W �Lr ÿ hg.

In terms of the entropy production, the dissipation inequality (3.31) can be written as

r � rint � rth P 0; �3:32�
where the internal coupled dissipation rint is de®ned by

rint � Sv � _Eh � Sh � _Ev; �3:33�
and the thermal dissipation rth by

rth � ÿhÿ1�rhh�rvh� � �Hh �Hv�: �3:34�
If Eq. (3.32) holds with the equality sign, the thermodynamic process is called reversible, otherwise irre-
versible.

4. Applications

The theory developed in Sections 2 and 3 is based mainly on the concept of Finslerian bundle formulated
on the tangent space to the original base manifold (Matsumoto, 1986). A certain geometrical aspects of the
Finslerian geometry can be formulated in terms of the lifting of geometric object from the base manifold to
its tangent bundle (Yano and Ishihara, 1973). The aim of this theory, which is presented in Section 4.1 only
in outline, is to obtain the higher-order geometries of the base manifold. For simplicity, our consideration
presented below is devoted to generalize a classical damage tensor to the one de®ned on the tangent bundle.
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In Section 4.2, we formulate the macro±micro constitutive equations and the associated phenomeno-
logical macro constitutive relations for the thermo-inelastic processes for the Newtonian part of the direct
motion. This leads to a close correlation with a continuum mechanics constitutive modelling.

The possibility to decouple macro- and micromotions into components of Euclidean space structure was
a guiding idea to take into consideration mainly the contributions of the macromotion to propose in
Section 4.3 a strain-induced crack propagation criterion, de®ned by the di�erence between the strain energy
release rate and the rate of the surface energy of the crack. The used simpli®cation turns out to be rea-
sonable, since our manifold-theoretic setting yields an appropriate averaged internal structure represen-
tation.

4.1. A classical damage concept on the tangent bundle

In this section we investigate, based on the theory of lifting of scalar, vector and tensor ®elds from the
base manifold to its tangent bundle (Yano and Ishihara, 1973; Saczuk, 1992, 1994), the damage defor-
mation gradient on the tangent bundle over the damaged medium with an a�ne connection. We use a
three-dimensional manifold B to denote a body, whose deformation is described by mapping (2.2),
/ : B! /�B� � �B, where �B is the space in which we imagine B to move. Points in �B are denoted by �x and
local coordinates in �B by �xa. The tangent map T/ : TB! T �B will be, exclusively in this section, denoted by
F and identi®ed with the damage deformation gradient of /.

According to the concept of damage in continuous media (Kachanov, 1958), one can interpret the
mapping /, (2.2), as a damage deformation, if the change of area element dR at an arbitrary point x 2 B
into the current area element d�R at �x 2 �B, weakened by a deformation process, cannot be reproduced
during the unloading process. A damage state regarded here as a non-holonomicity (due to existing voids,
impurities and microcracks) cannot be realized e�ectively using the body description. Since a damage
process is a non-linear anisotropic phenomenon (Fu et al., 1998), it is reasonable to use the ®bre bundle
structure for its continual modelling, where the geometric structure of damage can be invariantly de-
composed into a linear vertical structure and a non-linear horizontal one. In this section, the damage in the
medium is described on the tangent bundle over the medium with an a�ne connection. A ®bre bundle
approach to an anisotropic damage analysis is presented by Fu et al. (1998).

Assume that an (intially) strained or dislocated state of B can be described by an a�ne connection r
with components Ci

jk in B. These coe�cients can be used to estimate the local dislocated state of the me-
dium caused by the growth of pre-existing microdefects, as well as by the nucleation and growth of new
microcracks. By �xi; yi� we denote the local induced coordinates in each subset of TB induced from xi and,
by ��xi; �yi� the induced coordinates in each subset of T/�B� � T �B. The natural ®elds of frames on TB; T �B and
coframes on T IB; T I �B are denoted by �gi; zi�; ��ga;�za� and �gi; zi�; ��ga;�za�, respectively, where gi � o=oxi;
�ga � o=o�xa; gi � dxi; �ga � d�xa; zi � o=oyi;�za � o=o�ya; zi � dyi and �za � d�ya.

Next, we introduce a c-operation (cf. Yano and Ishihara, 1973) which, for a scalar f, a vector X and a
tensor A de®ned on B, is expressed by the relations

cf � 0; cxf � 0; �4:1�

cxA � xiAk
i zk; �4:2a�

cA � yiAk
i zk: �4:2b�

Applying the c-operation to the gradient of the function f and put rcf � c�rf �, the horizontal lift f H of f
in B to the tangent bundle TB is de®ned by

f H � yioif ÿrcf � of ÿrcf � 0; �4:3�
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where oi denotes the partial derivative with respect to xi and of � yioif . In the same way, the horizontal lift
XH of the vector X is given by

XH � XC ÿrcX; �4:4�
where XC, called the complete lift of X, is de®ned by

XC � X igi � oiX kyizk: �4:5�
In our interpretation, the position vector X in the medium without distinguished microstructure is pro-
longed to a position XC in the medium with microstructure (cf. Crampin and Pirani, 1986).

In view of Eq. (4.5) and applying Eq. (4.2a) to rcX � crX � yiriX kzk, Eq. (4.4) becomes

XH � X igi ÿ Ci
kX kzi �4:6�

with Ci
k � ylCi

lk. Here, the original vector X in B is transported parallely to the induced base in TB.
Corresponding to Eq. (4.6), the horizontal lift Hgi of gi from B into TB takes the form (cf. Eq. (2.8))

Hgi � gi ÿ Ck
i zk �4:7�

and its dual analogue is expressed, using the concept of lifting of a 1-form (Yano and Ishihara, 1973), by

Hgi � zi � Ci
kgk: �4:8�

This is exactly the same result as that given by Eq. (2.9b), which shows the consistency of the horizontal
lifting with the idea of connection.

In order to obtain the horizontal lift FH of F, we have to introduce the concept of vertical lift of some
®elds. For f ;X and A their vertical lifts (Yano and Ishihara, 1973) are de®ned by the following relations:

f V � f ; XV � X kzk; AV � Ak
i zk 
 gi: �4:9a±c�

It is seen from Eq. (4.9b) that the vertical lift of the vector X changes only the basis while its value does not
change.

Using (4.9b) for vertical lifts of the bases vectors gi and gi, we have

Vgi � zi;
Vgi � gi: �4:10�

Taking into account Eqs. (4.3) and (4.7)±(4.9a±c), the horizontal lift FH of F is de®ned as follows:

FH � �F a
i �ga�H 
 Vgi � �F a

i �ga�V 
 Hgi

� F a
i �ga 
 gi � �Cj

i F
a

j ÿ �Ca
bF b

i ��za 
 gi � F a
i �za 
 zi; �4:11a; b�

where the quantities �Cb
a � �yc �Cb

ca and �Cb
ca are components of r in /�B� � �B. The representation (4.11b)

reveals the in¯uence of the damage or non-holonomicity in the medium on the deformation gradient F.
Under this preparation, we come to de®ne the damage tensor. Let dS be the area element vector de®ned

by the cross-product of the two vectors VH and WH in B

dS � VH �WH � �1ÿD0�dR; �4:12�
where, in view of Eq. (4.6),

dR � V�W � V iW j gi � gj; �4:13�

D0dR � V�Wÿ VH �WH � �Ck
i V J W i ÿ Ck

i V iW j�zk � gj ÿ Ck
i C

l
jV

iW jzk � zl: �4:14�
If a damage state existing in the body B may be regarded as the initial damage, then the tensor D0 can be

identi®ed with the initial damage tensor as a tensorial representation of the non-holonomicity in the
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damaged medium. In turn, the vector dR0 � D0dR represents the damaged or invalidated area element dR
which, in turn, is identi®ed with a decrease of the load carrying area (cf. Chaboche, 1988b). It is possible to
de®ne the damage state of B induced by F and its in¯uences on the initial damage as well (Fu et al., 1998).
In particular, suppose that d�S is the element area vector de®ned by two vectors �VH and �WH in T �B. It is
represented, similar to Eq. (4.12), by

d�S � �VH � �WH � �1ÿD0r�d�R; �4:15�
where

d�R � �V� �H � �V a �W b �ga � �gb; �4:16�

D0rd�R � �V� �Wÿ �VH � �WH � ��Cc
a

�V b �W a ÿ �Cc
a

�V a �W b��zc � �gb ÿ �Cc
a
�Cn

b
�V a �W b �zc � �zn: �4:17�

According to �FX�H � FHXH, expression (4.15) may be given in the following form:

d�S � J H�FH�ÿT
dS � �1ÿDH

F �dS � JFÿT�1ÿDr�dS; �4:18�
where J H � det FH; J � det F, and the horizontal damage tensor �1ÿDH

F � is de®ned by

1ÿDH
F � J H�FH�ÿT

:

The tensor Dr de®ned by �1ÿDr� � Jÿ1J HFT�FH�ÿT
in Eq. (4.18) represents the in¯uence of non-holo-

nomicity or defects on the deformation gradient F. In the sequel, it is identi®ed with the additional damage
tensor.

From Eqs. (4.12), (4.15) and (4.18) and d�R � JFÿTdR, we have

1ÿD0r � FÿT�1ÿDr��1ÿD0�FT; �4:19�
which shows that the initial damage in B and the additional damage in the process of deformation are
transmitted to �B by F, where the tensor D0r is called the transferred damage tensor.

Combining Eqs. (4.12) and (4.18), we have

d�S � �1ÿD�dR; �4:20�
where the total damage tensor, according to Eq. (4.19),

1ÿD � JFÿT�1ÿDr��1ÿD0� � J�1ÿD0r�FÿT: �4:21�
Denoting by DF the direct damage tensor induced by the deformation F, from Eq. (4.21) one can obtain two
equivalent representations of the total damage tensor. The ®rst representation,

1ÿD � �1ÿDF��1ÿDr��1ÿD0�; �4:22�
de®nes the total damage to be composed from initial, additional, and direct (deformation-induced) dam-
ages. In turn, the second representation,

1ÿD � �1ÿD0r��1ÿDF�: �4:23�
shows that the total damage can be expressed by direct and transferred damages.

4.2. Constitutive modelling

The problem to ®nd constitutive relations for solids which undergo ®nite inelastic changes has become a
subject of major interest in the last period. To complete the system of ®eld equations presented in Section
3.2, we formulate, in this section, macro- and micro-constitutive equations, which have to be compatible
with the principle of material frame indi�erence, the Clasius±Duhem inequality and the symmetry prop-
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erties of the material. We restrict our considerations to the constitutive modelling of the Newtonian part of
the direct motion.

4.2.1. Micromodel of thermo-inelasticity
Assume that the Helmholtz free energy per unit mass W is the relevant thermodynamic functional to

describe the response of the deformation process of the solid. Expanding the state function W with respect
to the independent variables, we obtain

q0W�Eh;Ev; h� � q0W�Eh
0 ;E

v
0; h0� � Sh

0 � DEh � Sv
0 � DEv ÿ q0g0Dh

� 1

2
hC�DEh� � DE

�
� vC�DEv� � DEv � h

vC�DEh� � DEv � v
hC�DEv� � DEh

ÿ CV

h0

q0�Dh�2 ÿ CV Dh ch � DEh
� � cv � DEv

��� � � � ; �4:24�

where Sh
0 and Sv

0 are macro- and microstresses, g0 the entropy evaluated at the equilibrium state �Eh
0 ;E

v
0; h0�,

DEh � Eh ÿ Eh
0 ; . . . the increments of the dependent variables with respect to the equilibrium state and

hC; vC; h
vC;

v
hC are material tensors de®ned as partial derivatives of W with respect to the independent

variables

hC � oSh

oEh
; vC � oSv

oEv ;
h
vC �

oSh

oEv ;
v
hC �

oSv

oEh
;

where

Sh � q0

oW

oEh
; Sv � q0

oW
oEv ; g � ÿ oW

oh
: �4:25�

In relation (4.24), we denote by CV the speci®c heat at constant volume,

CV � ÿh
o2W

oh2
� h

og
oh
; �4:26�

by ch and cv the macro- and micropart of the Gr�uneisen tensor (cf. Gr�uneisen, 1912),

ch � q0 h
o2W

oh2

� �ÿ1
o2W

ohoEh
; cv � q0 h

o2W

oh2

� �ÿ1
o2W

ohoEv �4:27�

expressing the interaction between the strain and temperature ®elds. The tensor c was ®rst introduced by
Gr�uneisen (1912) as a parameter to describe the proportionality of the volume expansion coe�cient a with
the speci®c heat at constant volume CV .

From Eq. (4.24), the stress tensors and the entropy, Eq. (4.25), can be expressed in the case of harmonic
representation as

gÿ g0 �
CV

h0

Dhÿ CV �ch � DEh � cv � DEv�; �4:28�

Sh ÿ Sh
0 � hC�DEh� � h

vC�DEv� ÿ CV Dhch;

Sv ÿ Sv
0 � vC�DEv� � v

hC�DEh� ÿ CV Dhcv:
�4:29�

Relations (4.29) are just the incremental form of the thermo-inelastic constitutive law.
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Taking into account that x; y and t are independent space±internal space±time variables in the direct
motion description, we obtain from Eq. (4.29) or di�erentiating with respect time, relations (4.25) the rate
form of the constitutive equations

_Sh � hC� _Eh� � h
vC� _Ev� ÿ CV

_hch;

_Sv � vC� _Ev� � v
hC� _Eh� ÿ CV

_hcv;
�4:30�

where CV
_hch and CV

_hcv are the changes in the stress state due to the temperature changes. In reality, the
®eld variable y de®ning the internal state of the body satis®es the evolution equation (2.17).

4.2.2. Associated macromodel of ®nite thermo-inelasticity
The micromodel of ®nite inelasticity presented in Section 4.2.1 can be transformed into a phenome-

nological model of ®nite thermo-inelasticity by introducing, besides the free energy W, a second inelastic
potential U,

U � Û�Eh;Ev;rhh;rvh� � �U�Sv;Ev;rhh;rvh�; �4:31�
subject to the restrictions

U6 0; _kP 0; _kU � 0; �4:32�
where the parameter _k depending on the deformation history can be called the inelastic consistency pa-
rameter.

With the introduction of the inelastic potential (4.31), we are able to determine the microstrain tensor Ev

by an evolution law of the form

_Ev � _k
oU
oSv �4:33�

corresponding to the normality rule resulting from Hill's maximum work principle.
For inelastic loading, when _k > 0, we have U � 0 from Eq. (4.33). Then the inelastic consistency con-

dition leads to _U � 0 from which _k is calculated. After elimination of _Ev, the set of constitutive equations
(4.30) can be transformed into

_Sh ÿ _Sh
th � INC � _Eh; �4:34�

where the inelastic material tensor INC is de®ned by

INC � hCÿ Dÿ1 h
vC �

oU
oSv

�

 oU

oSv � v
hC

�
�4:35�

with the denominator

D � oU
oSv � vC � oU

oSv �
oU
oEv �

oU
oSv :

The thermal stress rate _Sh
th in Eq. (4.34) is de®ned by

_Sh
th � ÿCV

_hch � Dÿ1
h

vC � oU
oSv

oU
oSv CV

_hcv

�
ÿ oU

oH
_H

�
; �4:36�

where H � �rhh;rvh�.
If A � h

vC � oU=oSv can be approximated by A � trA1 or hC has the classical form then Eq. (4.35) can be
rewritten as

1038 J. Saczuk / International Journal of Solids and Structures 38 (2001) 1019±1044



INC � 1

�
ÿ Dÿ1 h

vC �
oU
oSv

� �
� hCÿ1 � oU

oSv � v
hC

� ��
hC � �1ÿ k�hC; �4:37�

where

k � Dÿ1 h
vC �

oU
oSv

� �
� hCÿ1 � oU

oSv � v
hC

� �
is a scalar-valued variable.

Restricting the Helmholtz free energy functional to the form

W � �W�Eh�d�; h� � Ŵ�Eh; d; h�; �4:38�
where d � d�X; t� is the crack density we de®ne stress measures of the second Piola±Kirchho� type

Sh � q0

oW

oEh
; Sd � q0

oW
od

�4:39�

with Sd considered as scalar-valued stress variable, power conjugate to the kinematical crack density
function d. If we assume that the dissipation potential of a damage evolution

U � Û�Eh; d;rh�; �4:40�
then the inelastic material tensor INC reduces to form (4.37). This case can be treated as a generalization of
Kachanov's tangent operator with a scalar-valued damage variable

k �
oU
oSd

oEh

od � hC � oEh

od

Cd
oU
oSd
� oU

od

;

which varies from 0 in the undamaged material to 1 at fracture.

4.3. The continuum B with distinguished cracks

In this section, we ®nd the extremum of a modi®ed functional IRt , which includes the evolving crack
surface Rt inside the body. We do not pose a priori any restriction on the topography of cracks or of the
crack process of the body. We rather consider in a bounded, connected, open region G � B the family of
possible cracked states. To each member of this family is assigned the surface energy created by the evo-
lution process of cracks. We have to consider the crack propagation problem by ®nding extrema of the
functional

IRt �
Z

Gt

Z
T
Lt�x; t;X;Fh; _X�dV dt �

Z
oGt

Z
T
�th � uh � th � uh�dS dt �

Z
Rt

Z
T
LR�x; t;X; _X�dS dt;

�4:41�

where Gt � G n Rt, uh and uh are virtual displacements for a given load increment. This functional repre-
sents the total energy of the body for a given crack surface Rt and a given loading process. The function LR

can be identi®ed with the energy of macro- and microcracks, which arises from a non-equilibrium state of
material particles in the neighbourhood of surface points. This energy is assumed to be composed of the
cohesive energy of bonds and the energy of dissipation due to macro- and microcrack growth at the initial
stage of the deformation process. For further load increments, LR accounts for the work of con®gurational
and deformational forces as well as the kinetic energy of points in the vicinity of a crack tip. One has to
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emphasize that the energy density function LR can, in general, be discontinuous along certain curves lying
on Rt.

The functional IRt of Eq. (4.41), di�ers from the functional It of Eq. (3.1) only by the termR
Rt

R
T LRt dS dt, which has no in¯uence on the extremal properties of the functional. Since an extremum of

IRt can occur only along the solutions of the Euler±Lagrange equations (3.18) and (3.21), the variation dIRt

takes the form

dIRt �
Z

oGt

Z
T
�th
� ÿ Thnh� � dX� �th ÿ Thnh� � dx

�
dS dt �

Z
Rt

Z
T
�rhLR � dx�rhLR � dX�dS dt;

�4:42�
where

rh
aLR � oLR

oX a
ÿ Nb

a

oLR

o _X b
�4:43�

is the surface force±momentum vector 8 andrhLR the surface inhomogeneity force, all distributed over Rt.
The Eulerian covariant operator rh

i used in Eq. (4.43) was introduced, according to the Finslerian geo-
metry methodology, in the form

rh
a��� �

o���
oX a
ÿ Nb

a

o���
o _X b

: �4:44�

Calculating this variation we assumed that the action integral has been restricted to the integral curves of
the Euler±Lagrange equations, because an extremum can be attained only along these solutions.

The boundary conditions, which follow directly from Eq. (4.42), are de®ned as follows. If the variations
dX and dx, respectively, coincide on Rt in both integrals of Eq. (4.42), then the necessary conditions for Eq.
(4.42) take the form

th
� ÿ Thnh

�
Rt
� dxR � th

� ÿ Thnh
�
Rt
� dXR �rhLR � dxR �rhLR � dXR � 0: �4:45�

If the boundary points of Rt can move along the curve X � Xt�x�, where X is the function of a parameter s,
then introducing dX � rhXtdx into Eq. (4.45), we obtain

�Lt1
h � ��Fh�T ÿ �rhXt�T�Th�nh �rhXtrhLR �rhLR � 0 �4:46�

after neglecting the deformational tractions t and the con®gurational tractions t for internal boundaries of
B during its deformation processes. In practice, it is rather di�cult to specify ad hoc such conditions.
Condition (4.46) represents the local equilibrium condition with a dependency of the possible crack gra-
dient rhXt on the deformation gradient Fh. It enables one to distinguish the actual crack path Xt from the
thermodynamically admissible paths of the moving crack. In the next step, from Eq. (4.46) one can obtain
Xt and rhXt, if we impose on Rt suitable boundary and initial conditions for rhLR and rhLt. From the
calculated Xt; _Xt; . . . at any load increment, one can update the surface energy

LRt�xR;Xt; _Xt�
and, according to Eq. (4.43), de®ne the surface±momentum rhLR on Rt. One should stress the fact that we
are dealing with an evolution of crack surfaces Rt, i.e.,

Rt2 � Xt��;Rt1� for t2 > t1:

8 Note that the case NC � 0 leads here to the decoupling of force and momentum vector and, in e�ect, to their classical de®nitions,

cf. Eqs. (3.8a,b) and (3.12a,b).
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In general, the cited form of the surface energy is not given a priori, but it is assumed to be originated
from the formation of new crack surfaces. Of course, its strong dependence on the orientation cannot be
omitted here.

4.3.1. Crack growth criterion
A (micro)crack placed in the stress intensity ®eld evolves because of an existing driving force arising from

a local decrease of the free energy in the body. This force depends on the con®guration of the (micro)cracks
and other defect arrangements. From the thermodynamics of crack propagation it follows that the crack
begins to evolve (to grow), if the driving force, de®ned by the di�erence between the increase of the free
energy and the work done by the applied stress, is not smaller than the fracture threshold value. This force
depends on the con®guration of the (micro)cracks and other defect arrangements. The structure of the
deformed material has therefore a decisive in¯uence not only on the crack nucleation, but also on the
resulting macrocrack formation, strictly correlated with the strength of the material. Such information
about the evolution of the internal state of the body can be included in the connection coe�cients.

Consideration of crack dynamics requires the analysis of irreversible processes in a zone surrounding the
crack tip. For the moving defect, which models the tip of a crack, the total energy release rate is used to
de®ne the driving force. In this situation, the crack dynamics requires an investigation of the irreversible
processes in a zone surrounding the crack tip. Following this line of thinking (Stumpf and Le, 1990, 1992;
Gurtin and Podio-Guidugli, 1998), we introduce the con®gurational dynamical tip traction which, after
identifying ÿLt with the total mechanical energy, i.e., the inelastic energy W plus the kinetic energy K
measured relative to the deformed (micro)crack tip, takes the well-known form

j �
I

tip

��W� K�1h ÿ �Fh�TTh�nh: �4:47�

The tip intergal,
H

tip
���nh, used above, represents an integral around an in®nitesimal sphere-type surface (an

in®nitesimal loop in the case of planar cracks) surrounding the crack tip, with nh representing the outward
unit normal to the sphere (the loop) (cf. Gurtin and Shvartsman, 1997). The energy release rate is then
de®ned as the scalar product

J � m � j � m �
I

tip

��W� K�1h ÿ �Fh�TTh�nh; �4:48�

where m is the direction of propagation of the (micro)crack tip. One should stress the fact that in our
considerations, the concept of a crack tip is more general than the one usually used in the literature, because
any point of the boundary oRt can be treated as the crack tip. The direction of motion of oRt, which de-
pends on the actual constraints of the surrounding medium, can be described in terms of the crack direction
of a single (micro)crack or the mean value of the microcrack directions in the representative volume.

The entropy production is used to identify the driving force power conjugate to the crack evolution rate
in the physical process. The scalar value of the driving force f for a crack propagation can be de®ned as the
di�erence between the strain energy release rate J and the surface energy rate w of the crack surface at the
tip,

f � J ÿ w P 0; w � d

ds

Z
Rt

LRt�xR;Xt; _Xt�dS �4:49�

as a necessary condition for the crack growth. The crack propagation direction m � Dnh
R must satisfy the

dissipation inequality at every increment of loads. Moreover, in the de®nition of w, a parameter s can
represent a characteristic length of the crack or may denote the time, if it is physically justi®ed.

To de®ne the crack growth criterion for the kinking of cracks, we have to rede®ne the strain energy
release rate J and the surface energy rate w in Eq. (4.49). First, consider the ®rst variation of Eq. (4.41),
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which in view of the condition dIRt P 0 valid for all families of admissible ®elds �X;Fh� (cf. Stumpf and Le,
1990), leads to the following inequality

Thnh
��
Rt
� dxR � Thnh

��
Rt
� dXR P th

��
Rt
� dxR � th

��
Rt
� dXR �rhLR � dxR �rhLR � dXR: �4:50�

If the corner points of Rt can move along the curve X̂R � X̂t�x̂R� with rhX̂t � F̂h, where X̂2 is the function
of a parameter ŝ, then on the basis of Eq. (4.50), one can de®ne

J �
I

tip

�W
n

� K�1h � ��F̂h�T ÿ �Fh�T�Th
o

Rt

nh � m;

w �
Z

Rt

f�th � �F̂h�Tth�Rt
�rhLR � �F̂h�Trh

LRg � m dS:

From comparison, it follows that the de®nitions of J and w include additional terms resulting from the
corner point motions X̂R and the assumed tractions on Rt.
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