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Abstract

In the paper, the Finslerian-geometry-oriented model of the continuum with microstructure is formulated within the
frame of Newtonian—Eshelbian continuum mechanics, based on the information characterizing a structure-dependent
evolution of state variables. In this approach, position- and direction-dependent deformation and strain measures are
used to describe the motion of the continuum with microstructure at the macro- and microlevel. The variational ar-
guments for a Lagrangian functional defined on the Finslerian bundle are used to derive dynamic balance laws,
boundary and transversality conditions for macro- and microstresses of deformational and configurational type. The
dissipation inequality for the thermo-inelastic deformation processes is formulated by the sufficiency condition of
Weierstrass type for the action integral. The presented geometric technique is illustrated in the following examples. The
damage tensor, identified with a measure of reduction of load carrying area elements caused by the development of
microcracks or microvoids, is defined on the tangent bundle using the lifting technique. The macro—micro constitutive
equations and the associated phenomenological constitutive relations for the thermo-inelastic processes are derived in
terms of the free energy functional and a dissipation potential. A strain-induced crack propagation criterion, defined by
the difference between the strain energy release rate and the rate of the surface energy of the crack, is formulated for the
kinking of cracks. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

I am very pleased to present a paper for this special issue of the International Journal of Solids and
Structures dedicated to Multifield Theories. As my topic, I have chosen to discuss a general geometrical
approach within the frame of Newtonian—Eshelbian continuum mechanics, which leads directly to the
complete set of equations for a dissipative model of continuum with microstructure. One of the reasons for
this choice is the fact that a detailed description of inelastic material behaviour very often demands
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combined theoretical and experimental approaches. At the continuum level, the description of any phe-
nomenon involving inelastic, hysteretic and rate dependent material response combined with nucleation
and evolution of defects requires an extended theoretical methodology rather than a classical mechanical
description. In order to deal with a heterogeneous nature of stressed (distorted) state of the body, where the
motion of material particles (extended objects) is influenced by the presence of dislocations, cracks, voids
and other defects, a multidimensional configuration space is required for its description. The present study
provides the theoretical, structure-dependent framework for the continuum mechanics methodology in a
form suitable to model deformation processes of continua with microstructure based on a unified Finslerian
geometry conception. Mostly based on recent works in this subject, the contents of this paper show how the
Finslerian geometry (Finsler, 1918; Cartan, 1934), the classical case of the higher-order contact geometry
(Kawaguchi, 1962; Yano and Ishihara, 1973; Miron, 1997), can be used to find a complete set of field
equations for the continuum with microstructure at the macro- and microlevel. This generalized metric
geometry is a natural extension of the Riemannian geometry, where a metric tensor depends both on the
position and the direction (Rund, 1959; Asanov, 1985; Matsumoto, 1986; Abate and Patrizio, 1994; An-
tonelli and Miron, 1996; Bejancu, 1990; Miron, 1997). Certain geometric aspects of the geometry of higher-
order contact can be formulated using the lifting technique (Yano and Ishihara, 1973). Because a link
between the geometry of higher-order contact and the lifting technique manifests itself in different ways, its
essence is only illustrated here (cf. Saczuk, 1992, 1994; Fu et al., 1998). A presentation which follows is
strictly correlated with the role played by defects in the mechanical behaviour of materials since, e.g.,
deformation and fracture are not exceptions in determining whether or not particular processes are likely to
occur.

A fundamental problem in continua with microstructure accounting for defect distributions in the bulk,
originated independently by Kondo (1952, 1955) and Bilby et al. (1955), was developed by Bilby (1960),
Eshelby (1951, 1961), Kroner (1955, 1958) and Seeger (1961) in terms of the continuous distribution of
dislocations. Much efforts has been expended on the development of concepts of continua with micro-
structure based on notions of continuum mechanics (Truesdell and Toupin, 1960; Truesdell and Noll, 1965;
Noll, 1967; Wang, 1967; Eringen and Kadafar, 1976; Green and Rivlin, 1964; Mandel, 1974; Mindlin, 1964;
Capriz, 1989; Capriz and Podio-Guidugli, 1976; Green and Naghdi, 1995; Le and Stumpf, 1996a,b; Naghdi
and Srinivasa, 1993a,b). The origin of such theories is usually traced back to Cosserat and Cosserat (1909),
who introduced a rotation tensor at each material point as an additional field variable. The direction
adopted by Naghdi and Srinivasa (1993a,b) and Le and Stumpf (1996a,b) and based on a director concept,
was generalized by Stumpf and Saczuk (2000). Recently, the Finslerian geometry has been applied by
Saczuk (1996, 1997a,b) to propose a continual description of inelastic deformations of solids with micro-
structure.

A degradation process of the mechanical properties of solids, documented by experimental results, is
generally connected with nucleation and evolution, growth and coalescence of micro- and macrodefects as
voids and cracks. Such defects evolve, to some degree, independently to the motion of the body due to the
configurational forces (first derived and discussed by Eshelby, 1951), whose divergence embody the in-
homegeneity of the body. The role played by configurational forces on (macro)defects has attracted in-
creased interest in the recent years (Stumpf and Le, 1990, 1992; Maugin and Trimarco, 1992; Maugin, 1993;
Gurtin, 1995; Gurtin and Podio-Guidugli, 1996). A physically justified description of a progressive de-
gradation of the bulk properties of solids with defects was first proposed by Kachanov (1958) within a
scalar model of isotropic damage. Several investigations, following Kachanov (1958), have proposed
modifications of the scalar model (Kachanov, 1986; Chaboche, 1988a; Krajcinovic, 1989; Lemaitre, 1992).
Damage accounting for finite elasto-plastic deformations is further investigated among others by Simo and
Ju (1987) and Lubarda and Krajcinovic (1995). A fibre bundle approach to an anisotropic damage analysis
is presented by Fu et al. (1998), where the damage state is identified with a breakdown of the holonomicity
in the continuum.



J. Saczuk | International Journal of Solids and Structures 38 (2001) 1019—-1044 1021

The evolution of cracks in solids, crucial to the fracture behaviour, is generally connected with the non-
stable process of the propagation of displacement discontinuities and with the formation of new boundaries
that develop in the medium. Cracks dissipate energy by creating new surfaces, and the fracture toughness of
the material is related to the energy release rate at the tip of cracks. Numerous investigations (e.g., Gilman,
1960; Averbach, 1965; Kitagawa et al., 1975; Gurson, 1977) have shown the role of microstructure, en-
vironment and crack size influencing the fracture response of materials. The response of the crack on loads
is realized by structural changes in its orientation and topography in order to attain the infimum of the free
energy state (Francfort and Marigo, 1998). Most of the analysis of fracture mechanics is devoted to the
determination of the energy release rate, initiated by Griffith (1920), for various special conditions (cf.
Hertzberg, 1983; Freund, 1990). Standard models in fracture mechanics are based on the assumption that
the total energy of the body is the sum of a bulk term, representing the strain energy, and of a surface term,
representing the energy associated with the displacement discontinuity. Using the energy balance and the
singularity of the stress field in the vicinity of the crack tip, they lead to the finite energy release rate as the
crack expands. Of particular significance is the mathematical concept for a J-integral fracture analysis
established by Rice (1968).

The present paper is concerned with the development of the Finslerian-geometry-oriented model of the
continuum with microstructure. A kinematical concept used in this paper is largely motivated by features of
orientation-dependent phenomena like shear bands and cracks. The assumption relating the position of
material points in the actual configuration in terms of a position-direction dependent function leads to
deformation and strain measures for macro- and micromotion all depending on the position and direction
(Section 2). The variational arguments for a Lagrangian functional defined on the Finslerian bundle and an
assumed one-parameter family of transformations of the independent and dependent variables are used to
derive dynamic balance laws, boundary and transversality conditions for macro- and microstresses of
deformational as well as configurational type, where the latter have to be satisfied by the driving forces on
macro- and microdefects (Sections 3.1 and 3.2). The dissipation inequality for the thermo-inelastic de-
formation processes is formulated by the sufficiency condition of Weierstrass type for the action integral
(Section 3.3). The presented geometric approach is illustrated in the following examples. The damage
tensor, identified with a measure of reduction of load carrying area elements caused by the development of
microcracks or microvoids, is defined on the tangent bundle using the so-called lifting technique. The re-
sulting damage tensor is composed either from initial, additional and direct (deformation-induced) dam-
ages or from direct and transferred ones (Section 4.1). The macro—micro constitutive equations and the
associated phenomenological constitutive relations for the thermal-inelastic processes and a constitutive
damage model of Kachanov’s type accounting for the crack density are derived in terms of the free energy
functional and a dissipation potential (Section 4.2). A strain-induced crack propagation criterion, defined
by the difference between the strain energy release rate and the rate of the surface energy of the crack, is
formulated for the kinking of cracks (Section 4.3).

2. Basic kinematic equations

We consider a material body (continuum) % with microstructure at the equilibrium configuration Cy in
which the density p, and the temperature 0, have the uniform values, the stress state is not uniform and the
heat flux is everywhere zero. We will refer to Cy as the global reference configuration and denote by C; the
configuration attained by % at the current time ¢. The body 4 is considered to be modelled by a generalized
oriented continuum endowed at each point with a deformable vector. Such a choice stems form the fact that
the motion of a material particle (an extended geometric object) in 4 from one equilibrium configuration to
another one involves the cooperative motion of many microingredients (dislocations, microcracks) and
requires for its detailed description a multidimensional configuration space (cf. Kunin, 1990). The oriented
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particles of # are identified by their position x and direction y, briefly denoted by the pair (position, di-
rection) = (x,y) in the reference configuration Cj.

Within the adopted methodology, each material point of # located at a position x is endowed with an
internal structure described by an additional independent microvector (director) field y. All such points are
embedded in the continuum which contains heterogeneously distributed dislocations and voids (crack
dislocation arrays). > The state space B for the body without microstructure is the three-dimensional
physical Euclidean space. The state space % for the body with microstructure is the fibre space

Bx xMcCFE xP,

where B is the body and M, the microstructure in the reference configuration Cy, [E, the Euclidean space and
x x denotes the local Cartesian product (a local trivialization).

We assume that a deformation of the body % can be expressed in terms of the position-director-
dependent deformation vector y relating particles in the actual configuration C; by means of a smooth in-
vertible map

X = 2(x,y), 1:%B—FE xP (2.1a,b)

in terms of oriented particles in the reference configuration Cy. In the manifold-theoretic setting, we shall
therefore consider a vector field y on %, which can give rise to a vector field 7 on the base space B. The
notion of deformation is here identified with an injection y of 4 into E* x E°.

As a special case of Eq. (2.1), the kinematics of a generalized Cosserat continuum can be described by
two smooth functions

X = ¢(x), (2.2)
Y = 2(x)y, (2.3)

where y = (y',)?,)?) is the director in the initial configuration and Y = (Y!, Y2, ¥?) the director in the
actual configuration, and & denotes a linear map. From the geometric point of view, the two functions (2.2)
and (2.3) represent, in reality, coordinate transformations (extended point transformations) in E* x E°.

Formally, the motion of the body £ is a family of time-dependent diffeomorphisms g,, i.e. the time-
dependent relation of Eq. (2.1a),

X(t) = X,(X,Y) = X(Xaya t)’ (24)
where
1 BXxR—F xF xR (2.5)

is the time-dependent analogue of Eq. (2.1a).
2.1. Internal state specification

In this section, we discuss basic concepts suitable for defining the internal state of the body 4. This step,
which has no close correlation with the continuum mechanics methodology, is adapted from the theory of
non-holonomic subspaces (Yano and Davies, 1955; Deicke, 1955; Schouten, 1954) to introduce the mi-
crostructure-dependent covariant operators on 4. We assume that the internal state of the body can be
defined by specifying, for instance, the dislocation functional W(x,y) = L*(x,y), where L = L(x,y) is the
fundamental function describing the generation and evolution of dislocations. Accordingly, since cracks are

2 In this heterogeneous medium, classical particles can be viewed as individual continua.
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clearly responsible for the fracture of materials in a wide range of situations, the restriction of W to the
dislocation functional is not a severe limitation. This functional represents, very often, an anharmonic
approximation of interactions between dislocations and their self-energy. The mentioned identification is
motivated by the assumption in materials science saying that the energy density of dislocations is pro-
portional to the square of their Burgers vector (cf. Nabarro, 1967; Hirth and Lothe, 1968). The internal
vector field y can be identified here with the Burgers vector b multiplied by a number of mobile dislocations
(Eshelby et al., 1951).

For this purpose, we need to consider an arbitrary six-dimensional Riemannian space V" with the field of
frames (g, z;). The natural frame (g, z;) of V' is not transformed as basis, if the coordinate transformation
(2.2) and (2.3) are adopted to this space. This fact suggests to regard the space under consideration as a
non-holonomic subspace (here %) of the space V. This non-holonomic subspace has the frame of reference
("g,,2;), defined below, which is not associated with the coordinate system on #. The solution of this
problem will be based on the introduction of non-holonomic frames in V, instead of g, and z;, which leads
in a natural manner to connection coefficients in the space V' (cf. Yano and Davies, 1955).

According to Egs. (2.2) and (2.3), the local bases (g,,z;) at a point (x,y) and (g,,zy) at a point (X', y’)
are related by

g | _ | 09" /axt (@] /o)y | [ ] (2.6)
Z; 0 D} %
where ¥ = DY (x)*, ¢* = ¢ oy, ¥ =x oy !, etc. As follows from Eq. (2.6), the vectors g, are not

transformed as vectors. Suppose now that there exists on # a family of functions N"(x y), called coeffi-
cients of a non-linear connection, with the following law of transformation (cf. Comlc 1989):

0¢" .\ DXy "

Dy (x) — — . 2.7
Ox/ k ( ) axll O/ Y ( )
The existence of the non-linear connection N (Nf) allows one to introduce an adapted basis ("g,,z;) in V,
where the vectors "g, defined by

"g, =g, — Nz (2.8)

are transformed under Egs. (2.2) and (2.3) as vectors. The field of bases ("g,,z,), in turn, is adapted to the
decomposition of the tangent space 74 into the subbundle (7. %’)h spanned by "g, and the subbundle (7%)"
spanned by z; to model the macrobehaviour and the microbehaviour of the oriented material particles,
respectively.

The frame (g*, z") dual to ("g,,z) is then defined by

g = dv*, (2.9a)

Ni(x,y) = Nj (X,y) =

2t =7+ N, (2.9b)

where 2 = dy*. In dual terms, the cotangent space T* 2 is decomposed into the subbundle (T*#)" spanned
by gt and the subbundle (T*%)" spanned by “z*.

The specified quantities N¥ are defined by the fundamental function, * L, which from a physical point of
view can be identified with the free energy of dislocations and substructures induced by the deformation

3 Note that the non-linear connection coefficients can be determined by coefficients of a spray on manifold (cf. Sternberg, 1964;
Miron, 1997).
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process. In this way, one can define in an invariant manner a local topology (a topography of element glide
resistance, Kocks et al., 1975) of the dislocated body within the frame of macro- and microspace. To define
macro- and microconnections in the body %, which are intended to describe the internal state of it, we
proceed as follows.

We introduce covariant operators V" and V" for the macro- and microparts of the tangent space T%4
using Christoffel symbol concepts as follows:

Viy g ="' g (2.10)
V,z = Vl"szk. (2.11)

Connection coefficients of T ("I" f‘j) and IV (V"I f‘]), compatible with the metric tensor g;;, (2.16a), specified by
the conditions

Vig, & = 0k&ij — &1;" T — &'l =0, (2.12)

V.8 = g — &' Ty — &' T} = 0 (2.13)
are represented by the generalized Christoffel symbols *

hrj-k = 1" (0,gu + drgy — d1gi), (2.14)

It =1¢"(0,gu + Owgii — Dig ) (2.15)

The differentiation operator §; used in Eq. (2.14) stands for é; = 9y — N,ﬁgl, where 0, = 0/0x* and 0, =
o/0t.

The introduced connection coefficients "I",,¥I", and N/ are calculated from the assumed dislocation
(microstructure-dependent) functional L?> = W(x,y) in terms of the metric tensor

2i(%,y) = 309, (x,y), (2.16a)

LA (x,y) = gy(x,y)yy/ (2.16b)

and using the geodesic equations (the first-order evolution equations for the internal state vector y) (cf.
Miron, 1997)

dy’ .
126 (x,y) =0, (2.17)
d¢
where the components of the contravariant vector G' are defined by
. 1 ../ o*L? oL?
2G' =g —V"——=— ). 2.18
oxy) =3¢ 3as? ~ 5 ) .18)

The restrictions on the fundamental function L (positively homogeneous of degree one with respect to y)
are essentially those needed to ensure the regularity of the minimization problem of the integral [ L(x, dx).
An example of a position—direction-dependent functional L? = W(x,y) describing the energy of disloca-
tions can be found in Stumpf and Saczuk (2000).

According to conditions (2.12) and (2.13), and using the methodology of the Finslerian geometry (Rund,
1959; Matsumoto, 1986), connection coefficients (2.14) and (2.15) are finally reduced to

4 Originally denoted by I' ;1? and C}k, respectively; cf. Cartan (1934) and Rund (1959).
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hFijk = g,-zhl”fm hrijk(wi = Vijk — Vrkle,-l - Vrile/f + Vriklel> (2.19)
where

yiik(xa y) = %(akgij +Oigix — ajgki)v Vijk = gj/kaa (2.20)

Ty =gi' Ty, "Tu(x,y) =10igy(x,y). (2.21)

The tensor YI';, called the Cartan tensor field, is positively homogeneous of degree —1 with respect to y,
totally symmetric and satisfies the following property:

Ty =Ty =Ty’ =0 (2.22)
together with
0Ty =0 Ty = 9," Ty = 0.
The spray of the non-linear connection (2.18) written in terms of the connections yjk and "T" ;k has the form
G'(x,y) =5V Ni(xy) = 8G =",y (2.23)

One should stress here the evolution character of the internal vector field y which results from the fact
that the vector field y being the infinitesimal generator induces the flow ¢(e,x) (cf. Olver, 1993) in the
internal state space. The flow is, by definition, the parameterized (here by ¢) integral curve passing through
x in % defined by the following differential problem:

v=Soex), bl =x

for all e (for further details see Olver, 1993). This differential problem states that y is tangent to the curve
¢(e,x) for fixed x, i.e., for the specified initial conditions for this curve.

2.2. Deformation gradients
A deformation gradient in the generalized oriented continuum £ is defined in terms of covariant de-
rivatives (2.10) and (2.11) as follows. First, we introduce the direct sum of the covariant derivatives
V4V =g (Ve V)4,

where 7 is the codiagonal operator (cf. Pareigis, 1970) and @ the direct sum. Using the matrix notation for
the diagonal operator 4, the codiagonal operator 57 and the direct sum of covariant derivatives V" @ V",
we get

(1 o h v (VY0

where 1 is the identity tensor on %. Thus, the addition V" + V" is identified here with the following
composition:

vwwwzun<f130(i> (2.24)

According to Eq. (2.24), the deformation gradient F in the generalized oriented continuum £ is expressed
by

F=(V'"+V)X=F+F, (2.25)
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where °
F" =V'X = (F")i"g, @ g, F' =V'X=(F)z, "7, (2.26)

are macro- and micropart of F, ("g,,7,) is the basis in the actual configuration C, and ® denotes the tensor
product. The additive decomposition (2.25), opposite to the multiplicative one assumed in the classical
plasticity (Eckart, 1948; Lee, 1969), does not demand here any additional assumptions. The components F"
and F¥ do not describe strictly regular (say, elastic) and irregular (say, plastic) phenomena. It is apparent,
therefore, that the inelastic behaviour of a solid (a simple case of the dissipation phenomenon) cannot be
treated as a simple superposition of regular and irregular constituents.

Components of the deformation gradients F' and F¥ in Eq. (2.26) are given by

(FM)! = O X — 01X, G' + "I Xx*, (2.27)

(F"); = X" + Ty X" (2.28)
with
hFZk = 5?52<hrj’k ox™), Ty = 5?5201% oy h).

The connection coefficients appearing in Eqgs. (2.27) and (2.28) are defined in terms of components of the
metric tensor g = g(x,y) according to Egs. (2.14), (2.15) and (2.23).

We understand that the elimination of the internal vector field y from Egs. (2.17) and (2.26)—(2.28) leads
to a time-dependent relation for the deformation gradient F.

There are a number of special cases allowing to simplify the representation of F depending on whether (i)
the internal state variables are neglected and/or (ii) X is a function of x or y or both x and y. For instance, if
X = X(x), then

(F" = 9 X" +"T9X" and (F)f ="T%X".

One should note that whenever a given state of # has associated with it a non-vanishing torsion tensor,
then this state contains dislocations, as cogently argued by Kondo (1955). This fact implies that in the case
of 4, the objects 'I'§, and N; = 0,G' are non-singular. If the condition ¥I'}, = 0 is satisfied, then the vertical
part of deformation is Euclidean and the dissipative character of this measure is lost.

It is natural to assume that the deformation y is an orientation-preserving diffecomorphism demanding

J=detF=J"J">0 (2.29)

with J' = det F* and J¥ = det F'. For mappings which have continuous derivatives, this is the necessary
and sufficient condition for invertibility. Since F is invertible, one can use the polar decomposition from
linear algebra (Chevalley, 1946), and uniquely decompose F as follows:

F=RU=F"{F, (2.30)
where
F" =R"U", F =RU". (2.31)

Introduced above macro- and microstretch tensors, U" and U, are the positive definite tensors and macro-
and microrotation tensors, R" and R", the proper orthogonal tensors. By virtue of condition (2.29), relation

> Objects connected with the reference state of 2 are denoted by lowercase Latin letters that occupy the centre of the alphabet, that
is i, /,k, ..., while those connected with the actual state are designated by lowercase Latin letters at the front of the alphabet, that is
a,b,c,...
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(2.4) is invertible for any fixed value of ¢. This fact enables us to express various fields (such as the dis-
placement and the temperature) as the functions of (x,y, ).
Similarly, the velocity and acceleration of the material point at time ¢ are defined in the standard manner,

3 0

Vi = V(X7 Y, t) = X(X»Y» t) = aX(X»Y» t); (232)
.. 62

a = a(x, Y, t) = X(vav t) = @X(X; Y, t)~ (233)

Here, the dot is used to denote the partial time derivative under (x,y) fixed.
2.3. Material strain measures

Before formulating any definition of strain, it is necessary to define a distance in the space modelling the
behaviour of the body %. An element of length of %4 can be defined in the reference configuration Cj as

(ds)* = gu(x,y)dx"dx' + gu(x,y)Dy Dy’
and, in an analogical manner, in the actual configuration C,,
(dE)z = gab(x7 y)djj“dfcb + gab (Xv Y)DyaDyba

where g;; and g, are components of the metrics, while dx*, Dy* and dx“, Di* are the components of length
measured in the reference and the actual configuration of 4. To formulate an exact definition of inelastic
strain in 4 we use definition (2.25) and write

(ds)* — (ds)> =F'gF —g=C —g = 2E. (2.34)

The measure of deformation C : T*%4 — T* 4 introduced here is a structure-dependent Cauchy-Green type
strain measure defined by

C=FgF=C"+(C,

where C" = (F")'gF" and C' = (F*)"gF". The Cauchy-Green strain tensor, E, given by
E=3C-g),

where
g=g"+g. @),=@)=g

has the property of vanishing in the reference configuration.
Using definitions (2.27) and (2.28), we obtain the following representation for strain measures C" and C",

C" = (BX°0X" + 0, X DG X DG + TP T5X X

_ a(ZX(ba—lk‘Xa)a‘i) G — 5mX<b5(lGlm\hF‘aC>‘i)Xc 4 a(lX(th—-a) )Xc)gabgl g, (2.35)

eli
C = (éiXaéle + 5(1X(bvl-vt‘lc)‘i)Xc + vl—v;ivl—vle)]XdXe)g—abvzl ® in7

where () means the symmetric part with respect to the enclosed indices, and the sign | | around the index is
used to exclude it from the symmetrization operation. The interrelated pair of measures, Eq. (2.35), defined
in the invariant manner, is strictly connected with the analytical form of the functional L characterizing the
local topography of deformation process (cf. Kocks et al., 1975). Using the introduced strain measures one
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can, in principle, completely describe any state or distortion of the three-dimensional body in terms of some
suitable distribution and interaction energies of dislocations and/or other material defects.

Before concluding this section, one special case may be noted. In the case of the classical continuum
mechanics, when the internal vector field y is neglected, then C" has the classical sense, while C" is singular
if X and g are functions of x alone. In the other limiting case, when a residual state inside the body is non-
singular both C" and C" have to be considered. To specify the connection coefficients I, §,G' and "I, we
have to estimate the local dislocated (distorted) state of # by considering its fundamental functional L. In
general, X = X(x,y) and we are free to choose either C = C" 4 C" defined on the Finslerian bundle, or C"
defined on the fibre space, or C" defined on the base space of the Finslerian bundle.

3. Variational formulation

In this section, our purpose is to provide a complete set of balance laws and boundary conditions for
macro- and microstresses of Newtonian and Eshelbian type for a dissipative model of oriented continuum
with microstructure, say, with inhomogeneities and evolving defects. We extend and generalize the varia-
tional formulation technique developed and applied by Rund (1966), Lovelock and Rund (1975), Naghdi
and Srinivasa (1993a), Saczuk (1993, 1996), Stumpf and Le (1990, 1992), Maugin and Trimarco (1992),
Maugin (1993) and Stumpf and Saczuk (2000). Concerning the transversality conditions, we will take the
line adopted by Edelen (1981) and Saczuk (1993).

The direct problem of the calculus of variation is concerned with finding local sections (fields) of &,
which give critical (equilibrium) points of the integral [ %, dV dz. This problem is related to the problem of
finding solutions of the Euler—Lagrange equations.

3.1. The first-order action integral

According to the defined macro- and microdeformation gradients (2.26), the first-order functional is
defined as

[,:/ /gt(x,y,t,X,Fh,F",Xh,X")dth, (3.1)
G JT

where X" and X" are the time of derivative of Eq. (2.1) reduced to the macro- and microspace, respectively
(cf. Eq. (3.14)). We therefore assume that the Lagrangian density functional .#,, described by the first-order
derivatives of state variables, is a smooth map

L, xR xJY(F) — R,

where J!(-) is the first jet bundle (cf. Libermann and Marle, 1986). We also assume that the Lagrangian is
invariant under arbitrary transformations of coordinates x' and )’ with the non-singular Jacobian. A
common assumption splitting the functional %, into potential and kinetic parts is not introduced here.
Moreover, G denotes a fixed, closed and simply-connected region (a compact six-dimensional manifold) in
the six-dimensional space of (x,y), bounded by the surface OG and T a time interval. The region G is here
identified with a part of the body %. The volume element associated with any of the inelastically distorted
states considered in Eq. (3.1) is defined by

AV = \/gdxdy = /zdx'dx2dx’dy'dy?dy?, (3.2)

where g is the determinant of the metric tensor g = g @ g" with g and g¥ defined as

g'=gigoe, g=g'gda'g
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The variational derivative of functional (3.1) yields

51, — / /(Bgt)dVdH—/ /$t6(dth), (3.3)
G JT G JT
where
0¥ 0¥ 0% 0¥ 0L oo
Ve . V. Losxh LoSXY L LOSFY + —L.§xh
3, =V'Y,-0x+ V'Y, 6y+axh o +6XV o +6Fh ) +6FV o +6Xh d
+ 9% sy (3.4)
oX
and, using Eq. (3.2) and the assumption 67 = ds,
3(dvdr) = 8(,/gdxdyds) = [D"(8x) + D"(3y)]dV dt, (3.5)
with
o(d o(d
D"(3x) = V"(8x) + % VX, DY(8y) = V'(dy) + % V'X.

All variational derivatives are obtained ® under the assumption that the system (the body with loads)
admits a one-parameter transformation group acting on the independent and dependent variables in the
form

¥ =x+ (", )", 6, X" )e + o(e),
7 :yi—|—v§,(x’”,y’”,t,Xh)e—|—0(e), (3.6)
X=X+ 0% (2", y", t,X")e + o(e),
where e denotes a scalar parameter, while v}(-), v;(-) and v} (-) are class C! functions of their variables such
that
¥0)=x, y(0)=y, X(0)=x (3.7)
for e — 0.

To obtain the mechanical version of the balance laws for Z we define macro- and micromomentum
vectors

. 0%, 07,

=——* V=, 3.8a,b
P P (382,0)
configurational macro- and micromomentum vectors
0% 0¥
h t v t
= = 3-9
P P Ty (39)
macro- and microstress tensors
0¥ 0%
Th - _ Yot T = — Yot 3.10
th ’ aFV ’ ( )
configurational macro- and microstress tensors
Th=—21"—F"'T", T '=-21-F)T, (3.11)

© Existence and continuity of derivatives will be assumed without explicit mention.
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external and internal body forces

0% 0Z
h_ 2=t v _ !
' = X X (3.12a,b)
and macro- and microinhomogeneity forces
f=viy, F=v2. (3.13)

At a corner point X = (X", X") the above derivatives are to be interpreted as left- or right-hand derivatives.

Moreover, in Egs. (3.8a,b) and (3.9), we have adapted the following definitions of time-dependent objects:
XP=v= (9", X'=v'=(dy),

b ( 'Z),l o o) L (3.14)

X'=v'=00x ), Y=v=(00y")

calculated for a fixed particle of 4, with 0, denoting the partial derivative with respect to time ¢. One should
stress here that the decomposition of the cited objects into ( )™ and ( ) parts is unique. Such a notation is
used extensively throughout the remaining sections together with the convention

3X" = (8X)", &X' = (8X)".
Introducing Egs. (3.4), (3.5) and (3.8a,b)—(3.13) into Eq. (3.3) and using the divergence theorem, we
obtain
3, = / /[(—ph + £ + DivT") - 8X" + (—p* + ' + DivT") - 6X"
G JT
+ (=p" 4+ " + DivT") - 8x + (—p' + ' + DivT") - Sy]dV de
— / / (T"n" - 8x + Tn" - 5X" + T¥n" - §y + T'n" - 8X")dS ds, (3.15)
oG Jr
where dS denotes the element of area of the hypersurface G bounding G, n" and n" are the suitable ori-
entated unit normal vectors to 0G at the macro- and microlevel and
DivT" = D'T" —3GD'T" — T'I*, DivT' = D'T' — T'T,
DivT! = —-V"2, — (F")"(f" + DivT"), Divl' = -V'%, — (F)" (' + DivT")

the generalized divergence operator Div of T", T', T" and T".
The variation (3.15) was obtained under the following initial conditions:

ph|O:ph|t:07 pv|0:pv‘t:07

P (3.16)
[FDh|0:[FDh|tZO’ [FD|0:|]:|)|t:0

at the initial and final times. The stationary conditions for an arbitrary time variation d¢,
vioph vt ph =0, vVepv+vi-pt =0

represent kinematical compatibility conditions between physical v!(v") and material v"(v") velocities and
physical p"(p") and material p"(p*) momentum rates at both levels.

The constitutive relations (3.8a,b)—(3.13) describing the conservative part of the model may be deduced
from the Clausius—Duhem inequality.

The starting point for the investigation of the dissipative model of oriented continuum with micro-
structure is the action integral (3.15) modified by including into its integrand prescribed tractions t",t",
whose components are taken in the actual configuration and configurational boundary stresses ", t¥, whose
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components are taken in the reference configuration on each part of 0G. We assume that the action /,
associated with the motion of % satisfies the relation

51,2—/ /(th-6xh+tv-axv+ﬁ“-6x+ﬁv-8y)dth. (3.17)
G JT

It is also assumed that body forces f* and f' acting on each volume element dV of % are defined by
Eq. (3.12a,b), and, analogously, configurational body forces f and f* acting on each volume dV of % are
defined by Eq. (3.13).

3.2. Balance laws, boundary and transversality conditions

The dynamical laws and boundary conditions for deformational and configurational forces resulting
from the stationarity condition (3.15) together with Eq. (3.17) are following:
(a) The balance of deformational and configurational macromomentum

Pt =" + DivT", p" = + DivTh, (3.18)

where p" is the momentum vector, p" the Eshelbian momentum vector, T" the first Piola—Kirchhoff
macrostress tensor, T" the Eshelbian macrostress tensor, f* the external macrobody force and " the mate-
rial macroinhomogenity force.

(b) The balance of moment of deformational and configurational macromomentum

' =@, )’ = Tt (3.19)
(c) The balance of deformational and configurational micromomentum
p' =1 +DivT", p' =1 +DivT", (3.20)

where p¥ is the micromomentum vector, p* the Eshelbian micromomentum vector, T" the first Piola—
Kirchhoff microstress tensor, T" the Eshelbian microstress tensor, f the internal microbody force and ¥ the
material microinhomogeneity force.

(d) The balance of moment of deformational and configurational macromomentum

) =1T'(F)", (1) =T1'C". (3.21)
(e) The traction boundary conditions and the configurational traction boundary conditions
T =t", T'=t, T'a"=t" T =t (3.22)

where n" and n¥ are the outer normal vectors to the boundary 0% at macro- and microlevel, respectively.
(f) The transversality conditions

—T"n" - 8x = T"n" . 5X", —T'n" - 8y = T'n" - 8X" (3.23)

are the result of demanding that the variational identity (3.15) is equal to zero, &, = 0, for all variations
(8x, dy, dXn, 8X"). A set of variations (9x, dy, X", 0X") satisfies the transversality conditions on 0G if and
only if the conditions (3.23) are satisfied at all points of 0G (Edelen, 1981; Saczuk, 1993).

One has to note that the transversality conditions must be satisfied, if the action of the functional /, has
to be stationary. An integration of both sides of Eq. (3.23) over an arbitrary boundary X of G, say a new
fracture surface, leads to the virtual surface principles:

- / Thn" . §xdX = / T'n" - 5X"dz, (3.24)
P

)
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—/ Tn" - dyd2 = / T'n" - 6X'd2. (3.25)
z b

Here, 2~ may denote either an arbitrary part 0G of the body % or a certain internal boundary within the
body like that connected with the evolution of new crack surfaces in the fracture process. The principles
(3.24) and (3.25) define an equality between generalized field forces on variable boundaries and the actual
forces that act directly on the boundaries in their motion.

3.3. The dissipation inequality

The second law of thermodynamics is the assertion that, when thermal effects are neglected, the rate of
energy increase cannot exceed the total expended power. Written in the form of the Clausius—Duhem in-
equality (or the entropy production inequality) it is identified here with the sufficiency condition for the
functional (3.1) (cf. Saczuk, 1997b; Stumpf and Saczuk, 2000).

The Euler—Lagrange equations (3.18)—(3.21) of Eq. (3.1) are not, in general, sufficient for the functional
I, to assume the extreme value. The sufficiency conditions for /,, strictly connected with the convexity
conditions demanded by the dissipation inequality, can be easily obtained within the so-called method of
equivalent integrals (Rund, 1966; Lovelock and Rund, 1975). This method, in principle, requires the
construction of a function A, (a counterpart of the total derivative) defined on Eq. (2.1). This function being
independent of the choice of the subspace (2.1) is the integrand Z,(x,y) = Z,(x,y) — 4,(x,y) of a new
action integral

Ti(x,y) = / Zi(x.y)dV

which, by definition, provides an extreme value to the same solutions as the solutions of the original
problem defined by /, = [, Z,dV.
Within the cited method, we have to construct a function A, defined on

X'=X'(x,y,1), 0 =0(x,y,1). (3.26)

(Here we assume that %, is dependent also on temperature 0 and its gradients V"0 and V"'0.) The function
A,, which gives rise to the equivalent variational problem, can be given as follows (cf. Rund, 1966; Stumpf
and Saczuk, 2000):

R - 0%, 0%\ = =
A,(Fh7FV7Vh0, V¥0) = 3;5 det {X,g@ g+ <6Fh[—|— aFV’)(Fh —_F L - FY)
02, 02, T .
— 0 — V' Y0 — VY0 3.27
+<th9+aVv9>®(v V"0 + v — v'0)| (3.27)

where quantities V"0 and V"0 represent two temperature gradients, first, the temperature gradient of
material points, second, the internal temperature gradient of the internal structure of the point. - Moreover,
the arguments F", F" and V"0, V"0 refer here to the geodesic field in the analysed subspace, while F", F¥ and
V"0, V'O are arbitrary.

Under this preparation, the sufficiency condition of Weierstrass for thermo-inelastic process of 4 has the
form

&= &(F" F', V"0, V"0, F" F', V"0, V'0) > 0, (3.28)

7 The multiplier &L 5 in Eq. (3.27) is a consequence of the dimension of % and definition of the determinant.
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valid for all F* = QhFh and F* = Q'F" with arbitrary positive-definite tensors Q" and Q" and for all con-
stants ¢ such that 6 = 6 4+ ¢ > 0. The Weierstrass excess function & is then defined by

&= 2,(F" F',V"0,V"0) — A,(F" F*, V"0, V"0). (3.29)
Identification of the corresponding differences in Eq. (3.27) with their increments (thermodynamic forces)
leads to a local Clausius—Duhem type inequality accounting for thermal effects in the form

poLr — (TV +TY) - (F" + FY) + 071 (V"0 + V*0) - (H" + H") <0, (3.30)

where 5?,(3, = pyZ,) is the rate of energy functional per unit mass, p, the mass density in the reference
configuration, » the entropy, 0 the absolute temperature, H" and H' macro- and microheat flux vectors.
Here, the thermal terms were obtained within the theory of hyperbolic heat transfer (Gurtin and Pipkin,
1968), where a thermal path (0(¢), V'0(¢), V¥0(¢)) is identified with its summed history (0(s), V"0'(s),
V'0'(s)), whose rates are given by

d Nt _ 4 d nt _ 13
G0 =00 —0(), V() =00 - V().
d

3V 0() = V000 = V0 (5.

In the case of a pure mechanical model, this inequality reduces to (cf. Hanyga, 1990)
oLy — (T +TY) - (F" + F*) 0.
From the fact that the right-hand side of Eq. (3.30) never exceeds some finite upper bound, equal p,07
(Day, 1972), the inequality (3.30) leads to the final form
po(n0+ ) — (T +TY) - (F* + F*) + 07 (V"0 + v'0) - (H" + H") <0 (3.31)
expressed in terms of the Helmholtz free energy ¥ = &, — On.
In terms of the entropy production, the dissipation inequality (3.31) can be written as
G = O + 0 = 0, (3.32)
where the internal coupled dissipation oy, is defined by
O =S -E" +S" . EY, (3.33)
and the thermal dissipation oy, by
om =—0"" (V"0 +V'0) - (H" + H"). (3.34)

If Eq. (3.32) holds with the equality sign, the thermodynamic process is called reversible, otherwise irre-
versible.

4. Applications

The theory developed in Sections 2 and 3 is based mainly on the concept of Finslerian bundle formulated
on the tangent space to the original base manifold (Matsumoto, 1986). A certain geometrical aspects of the
Finslerian geometry can be formulated in terms of the lifting of geometric object from the base manifold to
its tangent bundle (Yano and Ishihara, 1973). The aim of this theory, which is presented in Section 4.1 only
in outline, is to obtain the higher-order geometries of the base manifold. For simplicity, our consideration
presented below is devoted to generalize a classical damage tensor to the one defined on the tangent bundle.
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In Section 4.2, we formulate the macro-micro constitutive equations and the associated phenomeno-
logical macro constitutive relations for the thermo-inelastic processes for the Newtonian part of the direct
motion. This leads to a close correlation with a continuum mechanics constitutive modelling.

The possibility to decouple macro- and micromotions into components of Euclidean space structure was
a guiding idea to take into consideration mainly the contributions of the macromotion to propose in
Section 4.3 a strain-induced crack propagation criterion, defined by the difference between the strain energy
release rate and the rate of the surface energy of the crack. The used simplification turns out to be rea-
sonable, since our manifold-theoretic setting yields an appropriate averaged internal structure represen-
tation.

4.1. A classical damage concept on the tangent bundle

In this section we investigate, based on the theory of lifting of scalar, vector and tensor fields from the
base manifold to its tangent bundle (Yano and Ishihara, 1973; Saczuk, 1992, 1994), the damage defor-
mation gradient on the tangent bundle over the damaged medium with an affine connection. We use a
three-dimensional manifold B to denote a body, whose deformation is described by mapping (2.2),
¢ : B — ¢(B) C B, where B is the space in which we imagine B to move. Points in B are denoted by X and
local coordinates in B by ¥°. The tangent map T'¢ : 7B — TB will be, exclusively in this section, denoted by
F and identified with the damage deformation gradient of ¢.

According to the concept of damage in continuous media (Kachanov, 1958), one can interpret the
mapping ¢, (2.2), as a damage deformation, if the change of area element dX at an arbitrary point x € B
into the current area element dX at X € B, weakened by a deformation process, cannot be reproduced
during the unloading process. A damage state regarded here as a non-holonomicity (due to existing voids,
impurities and microcracks) cannot be realized effectively using the body description. Since a damage
process is a non-linear anisotropic phenomenon (Fu et al., 1998), it is reasonable to use the fibre bundle
structure for its continual modelling, where the geometric structure of damage can be invariantly de-
composed into a linear vertical structure and a non-linear horizontal one. In this section, the damage in the
medium is described on the tangent bundle over the medium with an affine connection. A fibre bundle
approach to an anisotropic damage analysis is presented by Fu et al. (1998).

Assume that an (intially) strained or dislocated state of B can be described by an affine connection V
with components I, in B. These coefficients can be used to estimate the local dislocated state of the me-
dium caused by the growth of pre-existing microdefects, as well as by the nucleation and growth of new
microcracks. By (x',)") we denote the local induced coordinates in each subset of 7B induced from x' and,
by (¥, ') the induced coordinates in each subset of T¢(B) C TB. The natural fields of frames on 7B, TB and
coframes on T*B,T"B are denoted by (g, %), (g,,Z,) and (g',z'), (g%,z%), respectively, where g, = 0/dx’,
g, =0/0x", g =dx',g* =dx*,z; = 0/0)',2, = 0/05", 7' = dy' and 7° = dj".

Next, we introduce a y-operation (cf. Yano and Ishihara, 1973) which, for a scalar f; a vector X and a
tensor A defined on B, is expressed by the relations

=0,  nf=0, (4.1
1A = XAz, (4.2a)
VA =y Ak, (4.2b)

Applying the y-operation to the gradient of the function f'and put V,f = y(Vf), the horizontal lift /™ of f
in B to the tangent bundle 7B is defined by

f1=yaf -V,f=08f - V,f =0, (4.3)
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where 0; denotes the partial derivative with respect to x' and 9f = y'0,f. In the same way, the horizontal lift
X" of the vector X is given by

X" =X -Vv)X, (4.4)
where X, called the complete lift of X, is defined by
X¢ = X'g, + 0.X*y'z,. (4.5)

In our interpretation, the position vector X in the medium without distinguished microstructure is pro-
longed to a position X€ in the medium with microstructure (cf. Crampin and Pirani, 1986).
In view of Eq. (4.5) and applying Eq. (4.2a) to V,X = yVX = y'V,X*z, Eq. (4.4) becomes

X" = X'g, — I' X"z (4.6)
with I', = y'T",. Here, the original vector X in B is transported parallely to the induced base in 7B.
Corresponding to Eq. (4.6), the horizontal lift Hg, of g, from B into TB takes the form (cf. Eq. (2.8))
Ho —g — Iz, (4.7)
and its dual analogue is expressed, using the concept of lifting of a 1-form (Yano and Ishihara, 1973), by
Hol — 7/ 4 Iig". (4.8)

This is exactly the same result as that given by Eq. (2.9b), which shows the consistency of the horizontal
lifting with the idea of connection.

In order to obtain the horizontal lift F*' of F, we have to introduce the concept of vertical lift of some
fields. For f,X and A their vertical lifts (Yano and Ishihara, 1973) are defined by the following relations:

fM=r XV =X'%, A'=dnog. (4.9a—<)
It is seen from Eq. (4.9b) that the vertical lift of the vector X changes only the basis while its value does not
change.
Using (4.9b) for vertical lifts of the bases vectors g; and g’, we have
Vg, =z, ‘g=¢. (4.10)
Taking into account Egs. (4.3) and (4.7)—(4.9a—c), the horizontal lift F' of F is defined as follows:
F' = (F'g)" © Vg + (Frg,)" o g

(
F'g, @8 + (NF = T4F)Z, @ g + F'2, 97, (4.11a,b)

where the quantities I'” = I? and I, are components of V in ¢(B) C B. The representation (4.11b)
reveals the influence of the damage or non-holonomicity in the medium on the deformation gradient F.

Under this preparation, we come to define the damage tensor. Let dS be the area element vector defined
by the cross-product of the two vectors VI and W in B

dS = V" x WH = (1 — D)dE, (4.12)
where, in view of Eq. (4.6),

dE=VxW=V'Wg xg, (4.13)

DydZ =V x W — VI x W = (T{V/ W = TV W)z, x g, — T TV W x . (4.14)

If a damage state existing in the body B may be regarded as the initial damage, then the tensor D, can be
identified with the initial damage tensor as a tensorial representation of the non-holonomicity in the
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damaged medium. In turn, the vector dXy = DodX represents the damaged or invalidated area element dX
which, in turn, is identified with a decrease of the load carrying area (cf. Chaboche, 1988b). It is possible to
define the damage state of B induced by F and its influences on the initial damage as well (Fu et al., 1998).
In particular, suppose that dS is the element area vector defined by two vectors VI and W in TB. It is
represented, similar to Eq. (4.12), by

dS = V! x WH = (1 — D,,)dE, (4.15)
where

dE=VxH=Vw'g, x g, (4.16)

Do dE =V x W — V! x WH = (TVPW* — VW) 7, x g, — [T} VW’ 7. X Z,. (4.17)

According to (FX)" = FX", expression (4.15) may be given in the following form:

dS =JH(F")dS = (1 — D)dS = JF (1 — D,)dS, (4.18)
where J" = det F', J = det F, and the horizontal damage tensor (1 — D}}) is defined by

1-D} =JHF") T

The tensor D, defined by (1 -D,)=J ’IJHFT(FH)fT in Eq. (4.18) represents the influence of non-holo-
nomicity or defects on the deformation gradient F. In the sequel, it is identified with the additional damage
tensor.

From Egs. (4.12), (4.15) and (4.18) and dX = JF "dX, we have

1-Dy. =F '(1-D,)(1-Dy)F", (4.19)

which shows that the initial damage in B and the additional damage in the process of deformation are
transmitted to B by F, where the tensor Dy, is called the transferred damage tensor.
Combining Egs. (4.12) and (4.18), we have

dS = (1 - D)dz, (4.20)
where the total damage tensor, according to Eq. (4.19),

1-D=JF"1-D,)1-Dy) =J(1-Dy)F". (4.21)
Denoting by D the direct damage tensor induced by the deformation F, from Eq. (4.21) one can obtain two
equivalent representations of the total damage tensor. The first representation,

1-D=(1-Dg)(1-D,)(1-Dy), (4.22)
defines the total damage to be composed from initial, additional, and direct (deformation-induced) dam-
ages. In turn, the second representation,

1-D=(1-Dy)(1—Dg). (4.23)

shows that the total damage can be expressed by direct and transferred damages.
4.2. Constitutive modelling

The problem to find constitutive relations for solids which undergo finite inelastic changes has become a
subject of major interest in the last period. To complete the system of field equations presented in Section
3.2, we formulate, in this section, macro- and micro-constitutive equations, which have to be compatible
with the principle of material frame indifference, the Clasius—Duhem inequality and the symmetry prop-
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erties of the material. We restrict our considerations to the constitutive modelling of the Newtonian part of
the direct motion.

4.2.1. Micromodel of thermo-inelasticity

Assume that the Helmholtz free energy per unit mass ¥ is the relevant thermodynamic functional to
describe the response of the deformation process of the solid. Expanding the state function ¥ with respect
to the independent variables, we obtain

po P (E" E',0) = p, W(E), Ey, 0)) + St - AE" + 83 - AE' — pyno A0
1
+3 {hC[AEh] - AE + "C[AE'] - AE’ 4+ " C[AE"] - AE" + ,C[AE'] - AE"

- % po(A0)* — CyAO[y" - AE" + " - AE'] } +o (4.24)
0

where S} and S} are macro- and microstresses, 77, the entropy evaluated at the equilibrium state (E{, E}, 0),
AE" = E" — E}, ... the increments of the dependent variables with respect to the equilibrium state and
he, vC, 1,C, V4C are material tensors defined as partial derivatives of ¥ with respect to the independent
variables

osh osY osh oS’
hC:_ha VC:—V’ hC:—v7 ;/1 = Agh
OE OE v OE OE
where
h'd v oy h'd
Sh:ﬁ()@a S = Po3pv n=-2q" (4.25)

In relation (4.24), we denote by Cy the specific heat at constant volume,

oy on
Cy=-0—=0— 4.26
" o>~ 0’ (4.26)
by y" and y" the macro- and micropart of the Griineisen tensor (cf. Griineisen, 1912),
v\ oy rw\ " v
h_ 0 vo_ 0 - 4.27
rer "( o) owoe T T P\"e ) doEr (4.27)

expressing the interaction between the strain and temperature fields. The tensor y was first introduced by
Griineisen (1912) as a parameter to describe the proportionality of the volume expansion coefficient o with
the specific heat at constant volume Cy.

From Eq. (4.24), the stress tensors and the entropy, Eq. (4.25), can be expressed in the case of harmonic
representation as

n—1y=-—A0—Cy(y" - AE" +y' - AE"), (4.28)

S" — Sh = "C[AE"] + "C[AE"] — CyAOY",

h (4.29)
S' — S} = C[AE'] + !C[AE] — C, Ay,

Relations (4.29) are just the incremental form of the thermo-inelastic constitutive law.
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Taking into account that x,y and ¢ are independent space—internal space-time variables in the direct
motion description, we obtain from Eq. (4.29) or differentiating with respect time, relations (4.25) the rate
form of the constitutive equations

S" = "C[E" +C[EY] — ¢, 0y,
. [+ CIE] = Gy (4.30)
S" ="C[E'] + };C[E"] — Cy0y",

where Cyéyh and CVéyV are the changes in the stress state due to the temperature changes. In reality, the
field variable y defining the internal state of the body satisfies the evolution equation (2.17).

4.2.2. Associated macromodel of finite thermo-inelasticity

The micromodel of finite inelasticity presented in Section 4.2.1 can be transformed into a phenome-
nological model of finite thermo-inelasticity by introducing, besides the free energy ¥, a second inelastic
potential @,

& = $(E" E, V"0, V'0) = &(S*, E', V"0, V'0), (4.31)
subject to the restrictions

<0, .=0, id=0, (4.32)

where the parameter J depending on the deformation history can be called the inelastic consistency pa-
rameter.

With the introduction of the inelastic potential (4.31), we are able to determine the microstrain tensor E
by an evolution law of the form

E =/ o 4.33
= (4.33)
corresponding to the normality rule resulting from Hill’s maximum work principle.
For inelastic loading, when 4 > 0, we have @ = 0 from Eq. (4.33). Then the inelastic consistency con-
dition leads to @ = 0 from which 1 is calculated. After elimination of EY, the set of constitutive equations
(4.30) can be transformed into

St St =INC. M, (4.34)
where the inelastic material tensor 'NC is defined by
op 09
IN~ _h =1 [hp v
c="C-D (VC 5 ® 35 h@) (4.35)
with the denominator
PO )
~ oS’ 0SY  OE' oS’
The thermal stress rate S?h in Eq. (4.34) is defined by
. . 0P [ 0D . o0 .
h _ h —lvp 27 27 v __ 7
Sth = CVB'Y +Dh C oS (asv CVH’Y 00 @), (436)

where @ = (V"0,V"0).
If A ="C-0@/0S" can be approximated by A = tr Al or "C has the classical form then Eq. (4.35) can be
rewritten as
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oP 0P
Mo [1-p(ie i) e (G ie) etk @37)

where

0o 0P
_p-1{hp. hp-1 [ 9%y
e=oie g ) e (G ie)

is a scalar-valued variable.
Restricting the Helmholtz free energy functional to the form

¥ = P(E"(d),0) = P(E",d,0), (4.38)
where d = d(X,¢) is the crack density we define stress measures of the second Piola—Kirchhoff type
l'4 oY
h
S"=p S Sa=po 37 (4.39)

with S; considered as scalar-valued stress variable, power conjugate to the kinematical crack density
function d. If we assume that the dissipation potential of a damage evolution

® = d(E" d,V0), (4.40)

then the inelastic material tensor 'NC reduces to form (4.37). This case can be treated as a generalization of
Kachanov’s tangent operator with a scalar-valued damage variable
0@ 9E" hp | GEM
. 2@ .0C-E
= o0 | 00
Cyq 3, + o

b

which varies from 0 in the undamaged material to 1 at fracture.

4.3. The continuum % with distinguished cracks

In this section, we find the extremum of a modified functional 7y, which includes the evolving crack
surface X, inside the body. We do not pose a priori any restriction on the topography of cracks or of the
crack process of the body. We rather consider in a bounded, connected, open region G C % the family of
possible cracked states. To each member of this family is assigned the surface energy created by the evo-
lution process of cracks. We have to consider the crack propagation problem by finding extrema of the
functional

12,:/ /fft(x,t,X,Fh,X)dth—i—/ /(th-uh+ﬁh-uﬂh)det+/ /ffz(x,t,X,X)det,
G JT oG, JT > Jr
(4.41)

where G, = G\ X, u" and u" are virtual displacements for a given load increment. This functional repre-
sents the total energy of the body for a given crack surface 2; and a given loading process. The function #x
can be identified with the energy of macro- and microcracks, which arises from a non-equilibrium state of
material particles in the neighbourhood of surface points. This energy is assumed to be composed of the
cohesive energy of bonds and the energy of dissipation due to macro- and microcrack growth at the initial
stage of the deformation process. For further load increments, %5 accounts for the work of configurational
and deformational forces as well as the kinetic energy of points in the vicinity of a crack tip. One has to
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emphasize that the energy density function .#s can, in general, be discontinuous along certain curves lying
on X,.

The functional 75, of Eq. (4.41), differs from the functional 7, of Eq. (3.1) only by the term
Is, Jr £x,dSdt, which has no influence on the extremal properties of the functional. Since an extremum of
5, can occur only along the solutions of the Euler—Lagrange equations (3.18) and (3.21), the variation 6/,
takes the form

8y, = / / [(t" — T"n") - X + (1" — T"n") - SX]det—f—/ /(vhgZ Sox + Vs - 8X)dS dt,
oG, JT 2 JT

(4.42)

gy = - N (4.43)

is the surface force-momentum vector 8 and V"% the surface inhomogeneity force, all distributed over X,.
The Eulerian covariant operator V! used in Eq. (4.43) was introduced, according to the Finslerian geo-
metry methodology, in the form

oh o() _ \»00)
V. () = Axa N, T (4.44)
Calculating this variation we assumed that the action integral has been restricted to the integral curves of
the Euler-Lagrange equations, because an extremum can be attained only along these solutions.

The boundary conditions, which follow directly from Eq. (4.42), are defined as follows. If the variations
80X and 9dx, respectively, coincide on X, in both integrals of Eq. (4.42), then the necessary conditions for Eq.
(4.42) take the form

[t — T "], - 8xy + [t" — T'n"] - 8Xy + V"L - 8% + V" L5 - 8X;5 = 0. (4.45)

If the boundary points of X, can move along the curve X = X,(x), where X is the function of a parameter s,
then introducing 8X = V"X,dx into Eq. (4.45), we obtain

(LAY + (B — (VX)) Tt + VX,V 25 + V2 =0 (4.46)

after neglecting the deformational tractions t and the configurational tractions t for internal boundaries of
2 during its deformation processes. In practice, it is rather difficult to specify ad hoc such conditions.
Condition (4.46) represents the local equilibrium condition with a dependency of the possible crack gra-
dient V"X, on the deformation gradient F". It enables one to distinguish the actual crack path X, from the
thermodynamically admissible paths of the moving crack. In the next step, from Eq. (4.46) one can obtain
X, and V"X,, if we impose on X, suitable boundary and initial conditions for V"¢ and V".%,. From the
calculated X,, X, ... at any load increment, one can update the surface energy

gzx(xl7 Xta XI)

and, according to Eq. (4.43), define the surface-momentum V"% on X,. One should stress the fact that we
are dealing with an evolution of crack surfaces 2, i.e.,

2, =X,/(2,) fort>t.

8 Note that the case N; = 0 leads here to the decoupling of force and momentum vector and, in effect, to their classical definitions,
cf. Egs. (3.8a,b) and (3.12a,b).
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In general, the cited form of the surface energy is not given a priori, but it is assumed to be originated
from the formation of new crack surfaces. Of course, its strong dependence on the orientation cannot be
omitted here.

4.3.1. Crack growth criterion

A (micro)crack placed in the stress intensity field evolves because of an existing driving force arising from
a local decrease of the free energy in the body. This force depends on the configuration of the (micro)cracks
and other defect arrangements. From the thermodynamics of crack propagation it follows that the crack
begins to evolve (to grow), if the driving force, defined by the difference between the increase of the free
energy and the work done by the applied stress, is not smaller than the fracture threshold value. This force
depends on the configuration of the (micro)cracks and other defect arrangements. The structure of the
deformed material has therefore a decisive influence not only on the crack nucleation, but also on the
resulting macrocrack formation, strictly correlated with the strength of the material. Such information
about the evolution of the internal state of the body can be included in the connection coefficients.

Consideration of crack dynamics requires the analysis of irreversible processes in a zone surrounding the
crack tip. For the moving defect, which models the tip of a crack, the total energy release rate is used to
define the driving force. In this situation, the crack dynamics requires an investigation of the irreversible
processes in a zone surrounding the crack tip. Following this line of thinking (Stumpf and Le, 1990, 1992;
Gurtin and Podio-Guidugli, 1998), we introduce the configurational dynamical tip traction which, after
identifying —%, with the total mechanical energy, i.e., the inelastic energy ¥ plus the kinetic energy K
measured relative to the deformed (micro)crack tip, takes the well-known form

i= f (P + K)1" — (F")"T"]n". (4.47)

The tip intergal, ftip(-)nh, used above, represents an integral around an infinitesimal sphere-type surface (an
infinitesimal loop in the case of planar cracks) surrounding the crack tip, with n" representing the outward
unit normal to the sphere (the loop) (cf. Gurtin and Shvartsman, 1997). The energy release rate is then
defined as the scalar product

J=v-j=v- 7{ (¥ +K)1" — (F")'T")n", (4.48)

where v is the direction of propagation of the (micro)crack tip. One should stress the fact that in our
considerations, the concept of a crack tip is more general than the one usually used in the literature, because
any point of the boundary 0%, can be treated as the crack tip. The direction of motion of 0%,, which de-
pends on the actual constraints of the surrounding medium, can be described in terms of the crack direction
of a single (micro)crack or the mean value of the microcrack directions in the representative volume.
The entropy production is used to identify the driving force power conjugate to the crack evolution rate
in the physical process. The scalar value of the driving force f for a crack propagation can be defined as the
difference between the strain energy release rate J and the surface energy rate i of the crack surface at the

tip,
d .
S=T=u=0, Y=o / Ly (x5, X, X,)dS (4.49)
2

as a necessary condition for the crack growth. The crack propagation direction v = Anl must satisfy the
dissipation inequality at every increment of loads. Moreover, in the definition of y, a parameter t can
represent a characteristic length of the crack or may denote the time, if it is physically justified.

To define the crack growth criterion for the kinking of cracks, we have to redefine the strain energy
release rate J and the surface energy rate  in Eq. (4.49). First, consider the first variation of Eq. (4.41),
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which in view of the condition 875, > 0 valid for all families of admissible fields (X, F") (cf. Stumpf and Le,
1990), leads to the following inequality

Thnh|zt . SXZ + Thnh{zl . SXZ = ﬁh|£, . SXZ + th . SXZ + Vhffz . SXZ +vh$2 . SXZ (450)

5

If the corner points of X, can move along the curve 5(; = X[(ﬁ;) with V"‘Xt = I:“h, where )22 1s the function
of a parameter §, then on the basis of Eq. (4.50), one can define

J:y{ [+ K1 [FT — @)} a o,

Z
v= | {["+ (BT, + VL5 + ()Y 25} - vdS.
Z

From comparison, it follows that the definitions of J and ¢ include additional terms resulting from the
corner point motions Xy and the assumed tractions on X,.
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